Power and Patience

The U.S. utility industry – particularly the electric-producing branch of it, there also are natural gas and water utilities – has found itself in a new, and very uncomfortable, position. Throughout the first quarter of 2009 it was front and center in the political arena.

Politics has been involved in the U.S. electric generation and distribution industry since its founding in the late 19th Century by Thomas Edison. Utilities have been regulated entities almost since the beginning and especially after the 1930s when the federal government began to take a much greater role in the direction and regulation of private enterprise and national economics.

What is new as we are about to enter the second decade of the 21st Century is that not only is the industry being in large part blamed for a newly discovered pollutant, carbon dioxide, which is naturally ubiquitous in the Earth’s atmosphere, but it also is being tasked with pulling the nation out of its worst economic recession since the Great Depression of the 1930s. Oh, and in your spare time, electric utilities, enable the remaking of the automobile industry, eliminate the fossil fuels which you have used to generate ubiquitous electricity for 100 years, and accomplish all this while remaining fiscally sound and providing service to all Americans. Finally, please don’t make electricity unaffordable for the majority of Americans.

It’s doubtful that very many people have ever accused politicians of being logical, but in 2009 they seem to have decided to simultaneously defy the laws of physics, gravity, time, history and economics. They want the industry to completely remake itself, going from the centralized large-plant generation model created by Edison to widely dispersed smaller-generation; from fossil fuel generation to clean “renewable” generation; from being a mostly manually controlled and maintained system to becoming a self-healing ubiquitously digitized and computer-controlled enterprise; from a marginally profitable (5-7 percent) mostly privately owned system to a massive tax collection system for the federal government.

Is all this possible? The answer likely is yes, but in the timeframe being posited, no.

Despite political co-option of the terms “intelligent utility” and “smart grid” in recent times, the electric utility industry has been working in these directions for many years. Distribution automation (DA) – being able to control the grid remotely – is nothing new. Utilities have been working on DA and SCADA (supervisory control and data acquisition) systems for more than 20 years. They also have been building out communications systems, first analog radio for dispatching service crews to far-flung territories, and in recent times, digital systems to reach all of the millions of pieces of equipment they service. The terms themselves were not invented by politicians, but by utilities themselves.

Prior to 2009, all of these concepts were under way at utilities. WE Energies has a working “pod” of all digital, self-healing, radial-designed feeders that works. The concept is being tried in Oklahoma, Canada and elsewhere. But the pods are small and still experimental. Pacific Gas and Electric, PEPCO and a few others have demonstration projects of “artificial intelligence” on the grid to automatically switch power around outages. TVA and several others have new substation-level servers that allow communications with, data collection from and monitoring of IEDs (Intelligent electrical devices) while simultaneously providing a “view” into the grid from anywhere else in the utility, including the boardroom. But all of these are relatively small-scale installations at this point. To distribute them across the national grid is going to take time and a tremendous amount of money. The transformation to a smart grid is under way and accelerating. However, to this point, the penetration is relatively small. Most
of the grid still is big and dumb.

Advanced metering infrastructure (AMI) actually was invented by utilities, although vendors serving the industry have greatly advanced the art since the mid-1990s. Utilities installed earlier-generation AMI, called automated meter reading (AMR) for about 50 percent of all customers, although the other 50 percent still were being read by meter readers traipsing through people’s yards.

AMI, which allows two-way communications with the meters (AMR is mostly one-way), is advancing rapidly, but still has reached less than 20 percent of American homes, according to research by AMI guru Howard Scott and Sierra Energy Group, the research and analysis division of Energy Central. Large-scale installations by Southern Company, Pacific Gas and Electric, Edison International and San Diego Gas and Electric, are pushing that percentage up rapidly in 2009, and other utilities were in various stages of pilots. The first installation of a true two-way metering system was at Kansas City Power & Light Co. (now Great Plains Energy) in the mid-1990s.

So the intelligent utility and smart grid were under development by utilities before politicians got into the act. However, the build-out was expected to take perhaps 30 years or more before completed down to the smallest municipal and co-operative utilities. Many of the smaller utilities haven’t even started pilots. Xcel Energy, Minneapolis, is building a smartgrid model in one city, Boulder, Col., but by May, 2009, two of the primary architects of the effort, Ray Gogel and Mike Carlson, had left Xcel. Austin Energy has parts of a smart grid installed, but it still reaches only a portion of Austin’s population and “home automation” reaches an even smaller proportion.

There are numerous “paper” models existent for these concepts. One, developed by Sierra Energy Group more than three years ago, is shown in Figure 1.

Major other portions of what is being envisioned by politicians have yet to be invented or developed. There is no reasonably priced, reasonably practical electric car, nor standardized connection systems to re-charge them. There are no large-scale transmission systems to reach remote windmill farms or solar-generating facilities and there is large-scale resistance from environmentalists to building such transmission facilities. Despite some political pronouncements, renewable generation, other than hydroelectric dams, still produces less than 3 percent of America’s electricity and that percentage is climbing very slowly.

Yes, the federal government was throwing some money at the build-out in early 2009, about $4 billion for smart grid and some $30-$45 billion at renewable energy. But these are drops in the bucket to the amount of money – estimated by responsible economists at $3 trillion or more – required just to build and replace the aging transmission systems and automate the grid. This is money utilities don’t have and can’t get without making the cost of electricity prohibitive for a large percentage of the population. Despite one political pronouncement, windmills in the Atlantic Ocean are not going to replace coal-fired generation in any conceivable time frame, certainly not in the four years of the current administration.

Then, you have global warming. As a political movement, global warming serves as a useful stick to the carrot of federal funding for renewable energy. However, the costs for the average American of any type of tax on carbon dioxide are likely to be very heavy.

In the midst of all this, utilities still have to go to public service commissions in all 50 states for permission to raise rates. If they can’t raise rates – something resisted by most PSCs – they can’t generate the cash to pay for this massive build-out. PSC commissioners also are politicians, by the way, with an average tenure of only about four years, which is hardly long enough to learn how the industry works, much less how to radically reconfigure it in a similar time-frame.

Despite a shortage of engineers and other highly skilled workers in the United States, the smart grid and intelligent utilities will be built in the U.S. But it is a generational transformation, not something that can be done overnight. To expect the utility industry to gear up to get all this done in time to “pull us out” of the most serious recession of modern times just isn’t realistic – it’s political. Add to the scale of the problem political wrangling over every concept and every dollar, mix in a lot of government bureaucracy that takes months to decide how to distribute deficit dollars, and throw in carbon mitigation for global warming and it’s a recipe for disaster. Expect the lights to start flickering along about…now. Whether they only flicker or go out for longer periods is out of the hands of utilities – it’s become a political issue.

Online Transient Stability Controls

For the last few decades the growth of the world’s population and its corresponding increased demand for electrical energy has created a huge increase in the supply of electrical power. However, for logistical, environmental, political and social reasons, this power generation is rarely near its consumers, necessitating the growth of very large and complex transmission networks. The addition of variable wind energy in remote locations is only exacerbating the situation. In addition the transmission grid capacity has not kept pace with either generation capacity or consumption while at the same time being extremely vulnerable to potential large-scale outages due to outdated operational capabilities.

For example, today if a fault is detected in the transmission system, the only course is to shed both load and generation. This is often done without consideration for real-time consequences or alternative analysis. If not done rapidly, it can result in a widespread, cascading power system blackout. While it is necessary to remove factors that might lead to a large-scale blackout, restriction of power flow or other countermeasures against such a failure, may only achieve this by sacrificing economical operation. Thus, the flexible and economical operation of an electric power system may often be in conflict with the requirement for improved supply reliability and system stability.

Limits of Off-line Approaches

One approach to solving this problem involves stabilization systems that have been deployed for preventing generator step-out by controlling the generator acceleration through power shedding, in which some of the generators are shut off at the time of a power system fault.

In 1975, an off-line special protection system (SPS) for power flow monitoring was introduced to achieve the transient stability of the trunk power system and power source system after a network expansion in Japan. This system was initially of the type for which settings were determined in advance by manual calculations using transient stability simulation programs assuming many contingencies on typical power flow patterns.

This type of off-line solution has the following problems:

  • Planning, design, programming, implementation and operational tasks are laborious. A vast number of simulations are required to determine the setting tables and required countermeasures, such as generator shedding, whenever transmission lines are constructed;
  • It is not well suited to variable generations sources such as wind or photovoltaic farms;
  • It is not suitable for reuse and replication, incurring high maintenance costs; and
  • Excessive travel time and related labor expense is required for the engineer and field staff to maintain the units at numerous sites.

By contrast, an online TSC solution employs various sensors that are placed throughout the transmission network, substations and generation sources. These sensors are connected to regional computer systems via high speed communications to monitor, detect and execute contingencies on transients that may affect system stability. These systems in turn are connected to centralized computers which monitor the network of distributed computers, building and distributing contingencies based on historical and recent information. If a transient event occurs, the entire ecosystem responds within 150 ms to detect, analyze, determine the correct course of action, and execute the appropriate set of contingencies in order to preserve the stability of the power network.

In recent years, high performance computational servers have been developed and their costs have been reduced enough to use many of them in parallel and/or in a distributed computing architecture. This results in a system that not only provides a benefit in greatly increasing the availability and reliability of the power system, but in fact, can best optimize the throughput of the grid. Thus not only has system reliability improved or remained stable, but the network efficiency itself has increased without a significant investment in new transmission lines. This has resulted in more throughput within the transmission grid, without building new transmission lines.

Solution and Elements

In 1995, for the first time ever, an online TSC system was developed and introduced in Japan. This solution provided a system stabilization procedure required by the construction of the new 500kV trunk networks of Chubu Electric Power Co. (CEPCO) [1-4]. Figure 1 shows the configuration of the online TSC system. This system introduced a pre-processing online calculation in the TSC-P (parent) besides a fast, post-event control executed by the combination of TSC-C (child) and TSC-T (terminal). This online TSC system can be considered an example of a self-healing solution of a smart grid. As a result of periodic simulations using the online data in TSC-P, operators of energy management systems/supervisory control and data acquisition (EMS/ SCADA) are constantly made aware of stability margins for current power system situations.

Using the same online data, periodic calculations performed in the TSC-P can reflect power network situations and the proper countermeasures to mitigate transient system events. The TSC-P simulates transient stability dynamics on about 100 contingencies of the power systems for 500 kV, 275 kV and 154 kV transmission networks. The setting tables for required countermeasures, such as generator shedding, are periodically sent to the TSC-Cs located at main substations. The TSC-Ts located at generation stations, shed the generators when the actual fault occurs. The actual generator shedding by the combination of TSC-Cs and TSC-Ts is completed within 150 ms after the fault to maintain the system’s stability.

Customer Experiences and Benefits

Figure 2 shows the locations of online TSC systems and their coverage areas in CEPCO’s power network. There are two online TSC systems currently operating; namely, the trunk power TSC system, to protect the 500 kV trunk power system introduced in 1995, and the power source TSC system to protect the 154 kV to 275 kV power source systems around the generation stations.

Actual performance data have shown some significant benefits:

  • Total transfer capability (TTC) is improved through elimination of transient stability limitations. TTC is decided by the minimum value of limitations given by not only thermal limit of transmission lines but transient stability, frequency stability, and voltage stability. Transient stability limits often determines the TTC in the case of long transmission lines from generation plants. CEPCO was able to introduce high-efficiency, combined-cycle power plants without constructing new transmission lines. TTC was increased from 1,500 MW to 3,500 MW by introducing the on-line TSC solution.
  • Power shedding is optimized. Not only is the power flow of the transmission line on which a fault occurs assessed, but the effects of other power flows surrounding the fault point are included in the analysis to decide the precise stability limit. The online TSC system can also reflect the constraints and priorities of each generator to be shed. To ensure a smooth restoration after the fault, restart time of shut off generators, for instance, can also be included.
  • When constructing new transmission lines, numerous off-line studies assuming various power flow patterns are required to support off-line SPS. After introduction of the online TSC system, new construction of transmission lines was more efficient by changing the equipment database for the simulation in the TSC-P.

In 2003, this CEPCO system received the 44th Annual Edison Award from the Edison Electric Institute (EEI), recognizing CEPCO’s achievement with the world’s first application of this type of system, and the contribution of the system to efficient power management.

Today, benefits continue to accrue. A new TSC-P, which adopts the latest high-performance computation servers, is now under construction for operation in 2009 [3]. The new system will shorten the calculation interval from every five minutes to every 30 seconds in order to reflect power system situations as precisely as possible. This interval was determined by the analysis of various stability situations recorded by the current TSC-P over more than 10 years of operation.

Additionally, although the current TSC-P uses the same online data as used by EMS/ SCADA, it can control emergency actions against small signal instability by receiving phasor measurement unit (PMU) data to detect divergences of phasor angles and voltages among the main substations.

Summary

The online TSC system is expected to realize optimum stabilization control of recent complicated power system conditions by obtaining power system information online and carrying out stability calculations at specific intervals. The online TSC will thus help utilities achieve better returns on investment in new or renovated transmission lines, reducing outage time and enabling a more efficient smart grid.

References

  1. Ota, Kitayama, Ito, Fukushima, Omata, Morita and Y. Kokai, “Development of Transient Stability Control System (TSC System) Based on Online Stability Calculation”, IEEE Trans. on Power System, Vol. 11, No. 3, pp. 1463-1472, August 1996.
  2. Koaizawa, Nakane, Omata and Y. Kokai, “Acutual Operating Experience of Online Transient Stability Control System (TSC System), IEEE PES Winter Meeting, 2000, Vol. 1, pp 84-89.
  3. Takeuchi, Niwa, Nakane and T. Miura
    “Performance Evaluation of the Online Transient Stability Control System (Online TSC System)”, IEEE PES General Meeting , June 2006.
  4. Takeuchi, Sato, Nishiiri, Kajihara, Kokai and M. Yatsu, “Development of New Technologies and Functions for the Online TSC System”, IEEE PES General Meeting , June 2006.

Wind Energy: Balancing the Demand

In recent years, exponential demand for new U.S. wind energy-generating facilities has nearly doubled America’s installed wind generation. By the end of 2007, our nation’s total wind capacity stood at more than 16,000 megawatts (MW) – enough to power more than 4.5 million average American homes each year. And in 2007 alone, America’s new wind capacity grew 45 percent over the previous year – a record 5,244 MW of new projects and more new generating capacity than any other single electricity resource contributed in the same year. At the same time, wind-related employment nearly doubled in the United States during 2007, totaling 20,000 jobs. At more than $9 billion in cumulative investment, wind also pumped new life into regional economies hard hit by the recent economic downturn. [1]

The rapid development of wind installations in the United States comes in response to record-breaking demand driven by a confluence of factors: overwhelming consumer demand for clean, renewable energy; skyrocketing oil prices; power costs that compete with natural gas-fired power plants; and state legislatures that are competing to lure new jobs and wind power developments to their states. Despite these favorable conditions, the wind energy industry has been unable to meet America’s true demand for new wind energy-generating facilities. The barriers include the following: availability of key materials, the ability to manufacture large key components and the accessibility of skilled factory workers.

With the proper policies and related investments in infrastructure and workforce development, the United States stands to become a powerhouse exporter of wind power equipment, a wind technology innovator and a wind-related job creation engine. Escalating demand for wind energy is spurred by wind’s competitive cost against rising fossil fuel prices and mounting concerns over the environment, climate change and energy security.

Meanwhile, market trends and projections point to strong, continued demand for wind well into the future. Over the past decade, a similar surge in wind energy demand has taken place in the European Union (E.U.) countries. Wind power capacity there currently totals more than 50,000 MW, with projections that wind could provide at least 15 percent of the E.U.’s electricity by 2020 – amounting to an installed wind capacity of 180,000 MW and an estimated workforce of more than 200,000 people in wind power manufacturing, installation and maintenance jobs.

How is it, then, that European countries were able to secure the necessary parts and people while the United States fell short in its efforts on these fronts? After all, America has a bigger land mass and a larger, more high-quality wind resource than the E.U. countries. Indeed, the United States is already home to the world’s largest wind farms, including the 735-MW Horse Hollow Wind Energy Center in Texas, which generates power for about 230,000 average homes each year. What’s more, this country also has an extensive manufacturing base, a skilled labor pool and a pressing need to address energy and climate challenges.

So what’s missing? In short, robust national policy support – a prerequisite for strong, long-term investment in the sector. Such support would enable the industry to secure long lead-time materials and sufficient ramp-up to train and employ workers to continue wind power’s surging growth. Thus, the United States must rise to the occasion and assemble several key, interrelated puzzle pieces – policy, parts and people – if it’s to tap the full potential of wind energy.

POLICY: LONG-TERM SUPPORT AND INVESTMENT

In the United States, the federal government has played a key role in funding research and development, commercialization and large-scale deployment of most of the energy sources we rely on today. The oil and natural gas industry has enjoyed permanent subsidies and tax credits that date back to 1916 when Congress created the first tax breaks for oil and gas production. The coal industry began receiving similar support in 1932 with the passage of the first depletion allowances that enabled mining companies to deduct the value of coal removed from a mine from their taxable revenue.

Still in effect today, these incentives were designed to spur exploration and extraction of oil, gas and coal, and have since evolved to include such diverse mechanisms as royalty relief for resources developed on public lands; accelerated depreciation for investments in projects like pipelines, drilling rigs and refineries; and ongoing support for technology R&D and commercialization, such as the Department of Energy’s now defunct FutureGen program for coal research, its Deep Trek program for natural gas development and the VortexFlow SX tool for low-producing oil and gas wells.

For example, the 2005 energy bill passed by Congress provided more than $2 billion in tax relief for the oil and gas industry to encourage investment in exploration and distribution infrastructure. [2] The same bill also provided an expansion of existing support for coal, which in 2003 had a 10-year value of more than $3 billion. Similarly, the nuclear industry receives extensive support for R&D – the 2008 federal budget calls for more than $500 million in support for nuclear research – as well as federal indemnity that helps lower its insurance premiums. [3]

Over the past 15 years, the wind power industry has also enjoyed federal support, with a small amount of funding for R&D (the federal FY 2006 budget allotted $38 million for wind research) and the bulk of federal support taking the form of the Production Tax Credit (PTC) for wind power generation. The PTC has helped make wind energy more cost-competitive with other federally subsidized energy sources; just as importantly, its relatively routine renewal by Congress has created conditions under which market participants have grown accustomed to its effect on wind power finance.

However, in contrast to its consistent policies for coal, natural gas and nuclear power, Congress has never granted longterm approval to the wind power PTC. For more than a decade, in fact, Congress has failed to extend the PTC for longer than two years. And in three different years, the credit was allowed to expire with substantial negative consequences for the industry. Each year that the PTC has expired, major suppliers have had to, in the words of one senior wind power executive, “shut down their factories, lay off their people and go home.”

In 2000, 2002 and 2004, the expiration of the PTC sent wind development plummeting, with an almost complete collapse of the industry in 2000. If the PTC is allowed to expire at the end of 2008, American Wind Energy Associates (AWEA) estimates that as many as 75,000 domestic jobs could be lost as the industry slows production of turbines and power consumers reduce demand for new wind power projects.

The last three years have seen tenuous progress, with Congress extending the PTC for one and then two years; however, the wind industry is understandably concerned about these short-term extensions. Of significant importance is the corresponding effect a long-term or permanent extension of the PTC would have on the U.S. manufacturing sector and related investment activity. For starters, it would put the industry on an even footing with its competitors in the fossil fuels and nuclear industries. More importantly, it would send a clear signal to the U.S. manufacturing community that wind power is a solid, long-term investment.

PARTS: UNLEASHING THE NEXT MANUFACTURING BOOM

To fully grasp the trickle-down effects of an uncertain PTC on the wind power and related manufacturing industries, one must understand the industrial scale of a typical wind power development. Today’s wind turbines represent the largest rotating machinery in the world: a modern-day, 1.5-megawatt machine towers more than 300 feet above the ground with blades that out-span the wings of a 747 jetliner, and a typical utility-scale wind farm will include anywhere from 30 to 200 of these machines, planted in rows or staggered lines across the landscape.

The sheer size and scope of a utility-scale wind farm demands a sophisticated and established network of heavy equipment and parts manufacturers can fulfill orders in a timely fashion. Representing a familiar process for anyone who’s worked in a steel mill, forgery, gear-works or similar industrial facility, the manufacture of each turbine requires massive, rolled steel tubes for the tower; a variety of bearings and related components for lubricity in the drive shaft and hub; cast steel for housings and superstructure; steel forgings for shafts and gears; gearboxes for torque transmission; molded fiberglass, carbon fiber or hybrid blades; and electronic components for controls, monitoring and other functions.

U.S. manufacturers have extensive experience making all of these components for other end-use applications, and many have even succeeded in becoming suppliers to the wind industry. For example, Ameron International – a Pasadena, Calif.-based maker of industrial steel pipes, poles and related coatings – converted an aging heavy-steel fabrication plant in Fontana, Calif., to make wind towers. At 80 meters tall, 4.8 meters in diameter and weighing in at 200 tons, a wind tower requires large production facilities that have high up-front capital costs. By converting an existing facility, Ameron was able to capture a key and rapidly growing segment of the U.S. wind market in high-wind Western states while maintaining its position in other markets for its steel products.

Other manufacturers have also seen the opportunity that wind development presents and have taken similar steps. For example, Beaird Co. Ltd, a Shreveport, La.-based metal fabrication and machined parts manufacturer, supplies towers to the Midwest, Texas and Florida wind markets, as does DMI Industries from facilities in Fargo, N.D., and Tulsa, Okla.

But the successful conversion of existing manufacturing facilities to make parts for the wind industry belies an underlying challenge: investment in new manufacturing capacity to serve the wind industry is hindered by the lack of a clear policy framework. Even at wind’s current growth rates and with the resulting pent-up domestic demand for parts, the U.S. manufacturing sector is understandably reticent to invest in new production capacity.

The cause for this reticence is depicted graphically in Figure 1. With the stop-and-go nature of the PTC regarding U.S. wind development, and the consistent demand for their products in other end-use sectors, American manufacturers have strong disincentives to invest in new capital projects targeting the wind industry. It can take two to six years to build a new factory and 15 or more years to recapture the investment. The one- to two-year investment cycle of the U.S. wind industry is therefore only attractive to players who are comfortable with the risk and can manage wind as a marginal customer rather than an anchor tenant. This means that over the long haul, the United States could be legislating itself out of the “renewables” space, which arguably has a potential of several trillion dollars of global infrastructure.

The result in the marketplace: the United States ends up importing many of the large manufactured parts that go into a modern wind turbine – translating to a missed opportunity for domestic manufacturers that could be claiming a larger chunk of the underdeveloped U.S. wind market. As the largest consumer of electricity on earth, the United States also represents the biggest untapped market for wind power. At the end of 2007, with multiple successive years of 30 to 40 percent growth, wind power claimed just 1 percent of the U.S. electricity market. The raw potential for wind power in the United States is three times our total domestic consumption, according to the U.S. Energy Information Administration; if supply chain issues weren’t a problem, wind power could feasibly grow to supply as much as 20 to 30 percent of our $330 billion annual domestic electricity market. At 20 percent of domestic energy supply, the United States would need 300,000 MW of installed wind power capacity – an amount that would take 20 to 30 years of sustained manufacturing and development to achieve. But that would require growth well above our current pace of 4,000 to 5,000 MW annually – growth that simply isn’t possible given current supply constraints.

Of course, that’s just the U.S. market. Global wind development is set to more than triple by 2015, with cumulative installed capacity expected to rise from approximately 91 gigawatts (GW) by the end of 2007 to more than 290 GW by the end of 2015, according to forecasts by Emerging Energy Research (EER). Annual MW added for global wind power is expected to increase more than 50 percent, from approximately 17.5 GW in 2007 to more than 30 GW in 2015, according to EER’s forecasts. [4]

By offering the wind power industry the same long-term tax benefits enjoyed by other energy sources, Congress could trigger a wave of capital investment in new manufacturing capacity and turn the United States from a net importer of wind power equipment to a net exporter. But extending the PTC is not the final step: as much as any other component, a robust wind manufacturing sector needs skilled and dedicated people.

PEOPLE: RECLAIMING OUR MANUFACTURING ROOTS

In 2003, the National Association of Manufacturers released a study outlining many of the challenges facing our domestic manufacturing base. “Keeping America Competitive – how a Talent Shortage Threatens U.S. Manufacturing” highlights the loss of skilled manufacturing workers to foreign competitors, the problem of an aging workforce and a shift to a more urban, high tech economy and culture.

In particular, the study notes a number of “image” problems for the manufacturing industry. To wit: Among a geographically, ethnically and socio-economically diverse set of respondents – ranging from students, parents and teachers to policy analysts, public officials, union leaders, and manufacturing employees and executives – the sector’s image was found to be heavily loaded with negative connotations (and universally tied to the old “assembly line” stereotype) and perceived to be in a state of decline.

When asked to describe the images associated with a career in manufacturing, student respondents offered phrases such as “serving a life sentence,” being “on a chain gang” or a “slave to the line,” and even being a “robot.” Even more telling, most adult respondents said that people “just have no idea” of manufacturing’s contribution to the American economy.

The effect of this “sector fatigue” can be seen across the Rust Belt in the aging factories, retiring workforce and depressed communities being heavily impacted by America’s turn away from manufacturing. Wind power may be uniquely positioned to help reverse this trend. A growing number of America’s young people are concerned about environmental issues, such as pollution and global warming, and want to play a role in solving these problems. With the lure of good-paying jobs in an industry committed to environmental quality and poised for tremendous growth, wind power may provide an answer to manufacturers looking to lure and retain top talent.

We’ve already seen that you don’t need a large wind power resource in your state to enjoy the economic benefits of wind’s surging growth: whether it’s rolled steel from Louisiana and Oklahoma, gear boxes and cables from Wisconsin and New Hampshire, electronic components from Massachusetts and Vermont, or substations and blades from Ohio and Florida, the wind industry’s needs for manufactured parts – and the skilled labor that makes them – is massive, distributed and growing by the day.

UNLEASHING THE POWER OF EVOLUTION

The wind power industry offers a unique opportunity for revitalizing America’s manufacturing sector, creating vibrant job growth in currently depressed regions and tapping new export markets for American- made parts. For utilities and energy consumers, wind power provides a hedge against volatile energy costs and harvests one of our most abundant natural resources for energy security.

The time for wind power is now. As mankind has evolved, so too have our primary sources of energy: from the burning of wood and animal dung to whale oil and coal; to petroleum, natural gas and nuclear fuels; and (now) to wind turbines. The shift to wind power represents a natural evolution and progression that will provide both the United States and the world with critical economic, environmental and technological solutions. As energy technologies continue to evolve and mature, wind power will soon be joined by solar power, ocean current power and even hydrogen as cost-competitive solutions to our pressing energy challenges.

ENDNOTES

  1. “American Wind Energy Association 2007 Market Report” (January 2008). www.awea.org/Market_Report_Jan08.pdf
  2. Energy Policy Act of 2005, Section 1323-1329. www.citizen.org/documents/energyconferencebill0705.pdf
  3. Aileen Roder, “An Overview of Senate Energy Bill Subsidies to the Fossil Fuel Industry” (2003), Taxpayers for Common Sense website. www.taxpayer.net/greenscissors/LearnMore/senatefossilfuelsubsidies.htm
  4. “Report: global Wind Power Base Expected to Triple by 2015” (November 2007), North American Windpower. www.nawindpower.com/naw/e107_plugins/content/content_lt.php?content.1478