Infrastructure and the Economy

With utility infrastructure aging rapidly, reliability of service is threatened. Yet the economy is hurting, unemployment is accelerating, environmental mandates are rising, and the investment portfolios of both seniors and soon-to-retire boomers have fallen dramatically. Everyone agrees change is needed. The question is: how?

In every one of these respects, state regulators have the power to effect change. In fact, the policy-setting authority of the states is not only an essential complement to federal energy policy, it is a critical building block for economic recovery.

There is no question we need infrastructure development. Almost 26 percent of the distribution infrastructure owned and operated by the electric industry is at or past the end of its service life. For transmission, the number is approximately 15 percent, and for generation, about 23 percent. And that’s before considering the rising demand for electricity needed to drive our digital economy.

The new administration plans to spend hundreds of billions of dollars on infrastructure projects. However, most of the money will go towards roads, transportation, water projects and waste water systems, with lesser amounts designated for renewable energy. It appears that only a small portion of the funds will be designated for traditional central station generation, transmission and distribution. And where such funds are available, they appear to be in the form of loan guarantees, especially in the transmission sector.

The U.S. transmission system is in need of between $50 billion and $100 billion of new investment over the next 10 years, and approximately $300 billion by 2030. These investments are required to connect renewable energy sources, make the grid smarter, improve electricity market efficiency, reduce transmission-related energy losses, and replace assets that are too old. In the next three years alone, the investor-owned utility sector will need to spend about $30 billion on transmission lines.

Spending on distribution over the next decade could approximate $200 billion, rising to $600 billion by 2030. About $60 billion to $70 billion of this will be spent in just the next three years.

The need for investment in new generating stations is a bit more difficult to estimate, owing to the uncertainties surrounding the technologies that will prove the most economic under future greenhouse gas regulations and other technology preferences of the Congress and administration. However, it could easily be somewhere between $600 billion and $900 billion by 2030. Of this amount, between $100 billion and $200 billion could be invested over the next three years and as much as $300 billion over the next 10. It will be mostly later in that 10-year period, and beyond, that new nuclear and carbon-compliant coal capacity is expected to come on line in significant amounts. That will raise generating plant investments dramatically.

Jobs, and the Job of Regulators

All of this construction would maintain or create a significant number of jobs. We estimate that somewhere between 150,000 and 300,000 jobs could be created annually by this build out, including jobs related to construction, post-construction utility operating positions, and general economic "ripple effect" jobs through 2030.

These are sustainable levels of employment – jobs every year, not just one-time surges.

In addition, others have estimated that the development of the smart grid could add between 150,000 and 280,000 jobs. Clearly, then, utility generation, transmission and distribution investments can provide a substantial boost for the economy, while at the same time improving energy efficiency, interconnecting critical renewable energy sources and making the grid smarter.

The beauty is that no federal legislation, no taxpayer money and no complex government grant or loan processes are required. This is virtually all within the control of state regulators.

Timely consideration of utility permit applications and rate requests, as well as project pre-approvals by regulators, allowance of construction work in progress in rate base, and other progressive regulatory practices would vastly accelerate the pace at which these investments could be made and financed, and new jobs created. Delays in permitting and approval not only slow economic recovery, but also create financial uncertainty, potentially threatening ratings, reducing earnings and driving up capital costs.

Helping Utility Shareholders

This brings us to our next point: Regulators can and should help utility shareholders. Although they have a responsibility for controlling utility rates charged to consumers, state regulators also need to provide returns on equity and adopt capital structures that recognize the risks, uncertainties and investor expectations that utilities face in today’s and tomorrow’s very de-leveraged and uncertain financial markets.

It is now widely acknowledged that risk has not been properly priced in the recent past. As with virtually all other industries, equity will play a far more critical role in utility project and corporate finance than in the past. For utilities to attract the equity needed for the buildout just described, equity must earn its full, risk-adjusted return. This requires a fresh look at stockholder expectations and requirements.

A typical utility stockholder is not some abstract, occasionally demonized, capitalist, but rather a composite of state, city, corporate and other pension funds, educational savings accounts, individual retirement accounts and individual shareholders who are in, or close to, retirement. These shares are held largely by, or for the benefit of, everyday workers of all types, both employed and retired: government employees, first responders, trades and health care workers, teachers, professionals, and other blue and white collar workers throughout the country.

These people live across the street from us, around the block, down the road or in the apartments above and below us. They rely on utility investments for stable income and growth to finance their children’s education, future home purchases, retirement and other important quality-of-life activities. They comprise a large segment of the population that has been injured by the economy as much as anyone else.

Fair public policy suggests that regulators be mindful of this and that they allow adequate rates of return needed for financial security. It also requires that regulatory commissions be fair and realistic about the risk premiums inherent in the cost of capital allowed in rate cases.

The cost of providing adequate returns to shareholders is not particularly high. Ironically, the passion of the debate that surrounds cost of capital determinations in a rate case is far greater than the monetary effect that any given return allowance has on an individual customer’s bill.

Typically, the differential return on equity at dispute in a rate case – perhaps between 100 and 300 basis points – represents between 0.5 and 2 percent of a customer’s bill for a "wires only" company. (The impact on the bills of a vertically integrated company would be higher.) Acceptance of the utility’s requested rate of return would no doubt have a relatively small adverse effect on customers’ bills, while making a substantial positive impact on the quality of the stockholders’ holdings. Fair, if not favorable, regulatory treatment also results in improved debt ratings and lower debt costs, which accrue to the benefit of customers through reduced rates.

The List Doesn’t Stop There

Regulators can also be helpful in addressing other challenges of the future. The lynchpin of cost-effective energy and climate change policy is energy efficiency (EE) and demand side management (DSM).

Energy efficiency is truly the low-hanging fruit, capable of providing immediate, relatively inexpensive reductions in emissions and customers bills. However, reductions in customers’ energy use runs contrary to utility financial interests, unless offset by regulatory policy that removes the disincentives. Depending upon the particulars of a given utility, these policies could include revenue decoupling and the authorization of incentive – or at least fully adequate – returns on EE, DSM and smart grid investments, as well as recovery of related expenses.

Additional considerations could include accelerated depreciation of EE and DSM investments and the approval of rate mechanisms that recover lost profit margins created by reduced sales. These policies would positively address a host of national priorities in one fell swoop: the promotion of energy efficiency, greenhouse gas reduction, infrastructure investment, technology development, increased employment and, through appropriate rate base and rate of return policy, improved stockholder returns.

The Leadership Opportunity

Oftentimes, regulatory decision making is narrowly focused on a few key issues in isolation, usually in the context of a particular utility, but sometimes on a statewide generic basis. Rarely is state regulatory policy viewed in a national context. Almost always, issues are litigated individually in high partisan fashion, with little integration as part of a larger whole where utility shareholder interests are usually underrepresented.

The time seems appropriate – and propitious – for regulators to lead the way to a major change in this paradigm while addressing the many urgent issues that face our nation. Regulators can make a difference, probably far beyond that for which they presently give themselves credit.

Power and Patience

The U.S. utility industry – particularly the electric-producing branch of it, there also are natural gas and water utilities – has found itself in a new, and very uncomfortable, position. Throughout the first quarter of 2009 it was front and center in the political arena.

Politics has been involved in the U.S. electric generation and distribution industry since its founding in the late 19th Century by Thomas Edison. Utilities have been regulated entities almost since the beginning and especially after the 1930s when the federal government began to take a much greater role in the direction and regulation of private enterprise and national economics.

What is new as we are about to enter the second decade of the 21st Century is that not only is the industry being in large part blamed for a newly discovered pollutant, carbon dioxide, which is naturally ubiquitous in the Earth’s atmosphere, but it also is being tasked with pulling the nation out of its worst economic recession since the Great Depression of the 1930s. Oh, and in your spare time, electric utilities, enable the remaking of the automobile industry, eliminate the fossil fuels which you have used to generate ubiquitous electricity for 100 years, and accomplish all this while remaining fiscally sound and providing service to all Americans. Finally, please don’t make electricity unaffordable for the majority of Americans.

It’s doubtful that very many people have ever accused politicians of being logical, but in 2009 they seem to have decided to simultaneously defy the laws of physics, gravity, time, history and economics. They want the industry to completely remake itself, going from the centralized large-plant generation model created by Edison to widely dispersed smaller-generation; from fossil fuel generation to clean “renewable” generation; from being a mostly manually controlled and maintained system to becoming a self-healing ubiquitously digitized and computer-controlled enterprise; from a marginally profitable (5-7 percent) mostly privately owned system to a massive tax collection system for the federal government.

Is all this possible? The answer likely is yes, but in the timeframe being posited, no.

Despite political co-option of the terms “intelligent utility” and “smart grid” in recent times, the electric utility industry has been working in these directions for many years. Distribution automation (DA) – being able to control the grid remotely – is nothing new. Utilities have been working on DA and SCADA (supervisory control and data acquisition) systems for more than 20 years. They also have been building out communications systems, first analog radio for dispatching service crews to far-flung territories, and in recent times, digital systems to reach all of the millions of pieces of equipment they service. The terms themselves were not invented by politicians, but by utilities themselves.

Prior to 2009, all of these concepts were under way at utilities. WE Energies has a working “pod” of all digital, self-healing, radial-designed feeders that works. The concept is being tried in Oklahoma, Canada and elsewhere. But the pods are small and still experimental. Pacific Gas and Electric, PEPCO and a few others have demonstration projects of “artificial intelligence” on the grid to automatically switch power around outages. TVA and several others have new substation-level servers that allow communications with, data collection from and monitoring of IEDs (Intelligent electrical devices) while simultaneously providing a “view” into the grid from anywhere else in the utility, including the boardroom. But all of these are relatively small-scale installations at this point. To distribute them across the national grid is going to take time and a tremendous amount of money. The transformation to a smart grid is under way and accelerating. However, to this point, the penetration is relatively small. Most
of the grid still is big and dumb.

Advanced metering infrastructure (AMI) actually was invented by utilities, although vendors serving the industry have greatly advanced the art since the mid-1990s. Utilities installed earlier-generation AMI, called automated meter reading (AMR) for about 50 percent of all customers, although the other 50 percent still were being read by meter readers traipsing through people’s yards.

AMI, which allows two-way communications with the meters (AMR is mostly one-way), is advancing rapidly, but still has reached less than 20 percent of American homes, according to research by AMI guru Howard Scott and Sierra Energy Group, the research and analysis division of Energy Central. Large-scale installations by Southern Company, Pacific Gas and Electric, Edison International and San Diego Gas and Electric, are pushing that percentage up rapidly in 2009, and other utilities were in various stages of pilots. The first installation of a true two-way metering system was at Kansas City Power & Light Co. (now Great Plains Energy) in the mid-1990s.

So the intelligent utility and smart grid were under development by utilities before politicians got into the act. However, the build-out was expected to take perhaps 30 years or more before completed down to the smallest municipal and co-operative utilities. Many of the smaller utilities haven’t even started pilots. Xcel Energy, Minneapolis, is building a smartgrid model in one city, Boulder, Col., but by May, 2009, two of the primary architects of the effort, Ray Gogel and Mike Carlson, had left Xcel. Austin Energy has parts of a smart grid installed, but it still reaches only a portion of Austin’s population and “home automation” reaches an even smaller proportion.

There are numerous “paper” models existent for these concepts. One, developed by Sierra Energy Group more than three years ago, is shown in Figure 1.

Major other portions of what is being envisioned by politicians have yet to be invented or developed. There is no reasonably priced, reasonably practical electric car, nor standardized connection systems to re-charge them. There are no large-scale transmission systems to reach remote windmill farms or solar-generating facilities and there is large-scale resistance from environmentalists to building such transmission facilities. Despite some political pronouncements, renewable generation, other than hydroelectric dams, still produces less than 3 percent of America’s electricity and that percentage is climbing very slowly.

Yes, the federal government was throwing some money at the build-out in early 2009, about $4 billion for smart grid and some $30-$45 billion at renewable energy. But these are drops in the bucket to the amount of money – estimated by responsible economists at $3 trillion or more – required just to build and replace the aging transmission systems and automate the grid. This is money utilities don’t have and can’t get without making the cost of electricity prohibitive for a large percentage of the population. Despite one political pronouncement, windmills in the Atlantic Ocean are not going to replace coal-fired generation in any conceivable time frame, certainly not in the four years of the current administration.

Then, you have global warming. As a political movement, global warming serves as a useful stick to the carrot of federal funding for renewable energy. However, the costs for the average American of any type of tax on carbon dioxide are likely to be very heavy.

In the midst of all this, utilities still have to go to public service commissions in all 50 states for permission to raise rates. If they can’t raise rates – something resisted by most PSCs – they can’t generate the cash to pay for this massive build-out. PSC commissioners also are politicians, by the way, with an average tenure of only about four years, which is hardly long enough to learn how the industry works, much less how to radically reconfigure it in a similar time-frame.

Despite a shortage of engineers and other highly skilled workers in the United States, the smart grid and intelligent utilities will be built in the U.S. But it is a generational transformation, not something that can be done overnight. To expect the utility industry to gear up to get all this done in time to “pull us out” of the most serious recession of modern times just isn’t realistic – it’s political. Add to the scale of the problem political wrangling over every concept and every dollar, mix in a lot of government bureaucracy that takes months to decide how to distribute deficit dollars, and throw in carbon mitigation for global warming and it’s a recipe for disaster. Expect the lights to start flickering along about…now. Whether they only flicker or go out for longer periods is out of the hands of utilities – it’s become a political issue.

Online Transient Stability Controls

For the last few decades the growth of the world’s population and its corresponding increased demand for electrical energy has created a huge increase in the supply of electrical power. However, for logistical, environmental, political and social reasons, this power generation is rarely near its consumers, necessitating the growth of very large and complex transmission networks. The addition of variable wind energy in remote locations is only exacerbating the situation. In addition the transmission grid capacity has not kept pace with either generation capacity or consumption while at the same time being extremely vulnerable to potential large-scale outages due to outdated operational capabilities.

For example, today if a fault is detected in the transmission system, the only course is to shed both load and generation. This is often done without consideration for real-time consequences or alternative analysis. If not done rapidly, it can result in a widespread, cascading power system blackout. While it is necessary to remove factors that might lead to a large-scale blackout, restriction of power flow or other countermeasures against such a failure, may only achieve this by sacrificing economical operation. Thus, the flexible and economical operation of an electric power system may often be in conflict with the requirement for improved supply reliability and system stability.

Limits of Off-line Approaches

One approach to solving this problem involves stabilization systems that have been deployed for preventing generator step-out by controlling the generator acceleration through power shedding, in which some of the generators are shut off at the time of a power system fault.

In 1975, an off-line special protection system (SPS) for power flow monitoring was introduced to achieve the transient stability of the trunk power system and power source system after a network expansion in Japan. This system was initially of the type for which settings were determined in advance by manual calculations using transient stability simulation programs assuming many contingencies on typical power flow patterns.

This type of off-line solution has the following problems:

  • Planning, design, programming, implementation and operational tasks are laborious. A vast number of simulations are required to determine the setting tables and required countermeasures, such as generator shedding, whenever transmission lines are constructed;
  • It is not well suited to variable generations sources such as wind or photovoltaic farms;
  • It is not suitable for reuse and replication, incurring high maintenance costs; and
  • Excessive travel time and related labor expense is required for the engineer and field staff to maintain the units at numerous sites.

By contrast, an online TSC solution employs various sensors that are placed throughout the transmission network, substations and generation sources. These sensors are connected to regional computer systems via high speed communications to monitor, detect and execute contingencies on transients that may affect system stability. These systems in turn are connected to centralized computers which monitor the network of distributed computers, building and distributing contingencies based on historical and recent information. If a transient event occurs, the entire ecosystem responds within 150 ms to detect, analyze, determine the correct course of action, and execute the appropriate set of contingencies in order to preserve the stability of the power network.

In recent years, high performance computational servers have been developed and their costs have been reduced enough to use many of them in parallel and/or in a distributed computing architecture. This results in a system that not only provides a benefit in greatly increasing the availability and reliability of the power system, but in fact, can best optimize the throughput of the grid. Thus not only has system reliability improved or remained stable, but the network efficiency itself has increased without a significant investment in new transmission lines. This has resulted in more throughput within the transmission grid, without building new transmission lines.

Solution and Elements

In 1995, for the first time ever, an online TSC system was developed and introduced in Japan. This solution provided a system stabilization procedure required by the construction of the new 500kV trunk networks of Chubu Electric Power Co. (CEPCO) [1-4]. Figure 1 shows the configuration of the online TSC system. This system introduced a pre-processing online calculation in the TSC-P (parent) besides a fast, post-event control executed by the combination of TSC-C (child) and TSC-T (terminal). This online TSC system can be considered an example of a self-healing solution of a smart grid. As a result of periodic simulations using the online data in TSC-P, operators of energy management systems/supervisory control and data acquisition (EMS/ SCADA) are constantly made aware of stability margins for current power system situations.

Using the same online data, periodic calculations performed in the TSC-P can reflect power network situations and the proper countermeasures to mitigate transient system events. The TSC-P simulates transient stability dynamics on about 100 contingencies of the power systems for 500 kV, 275 kV and 154 kV transmission networks. The setting tables for required countermeasures, such as generator shedding, are periodically sent to the TSC-Cs located at main substations. The TSC-Ts located at generation stations, shed the generators when the actual fault occurs. The actual generator shedding by the combination of TSC-Cs and TSC-Ts is completed within 150 ms after the fault to maintain the system’s stability.

Customer Experiences and Benefits

Figure 2 shows the locations of online TSC systems and their coverage areas in CEPCO’s power network. There are two online TSC systems currently operating; namely, the trunk power TSC system, to protect the 500 kV trunk power system introduced in 1995, and the power source TSC system to protect the 154 kV to 275 kV power source systems around the generation stations.

Actual performance data have shown some significant benefits:

  • Total transfer capability (TTC) is improved through elimination of transient stability limitations. TTC is decided by the minimum value of limitations given by not only thermal limit of transmission lines but transient stability, frequency stability, and voltage stability. Transient stability limits often determines the TTC in the case of long transmission lines from generation plants. CEPCO was able to introduce high-efficiency, combined-cycle power plants without constructing new transmission lines. TTC was increased from 1,500 MW to 3,500 MW by introducing the on-line TSC solution.
  • Power shedding is optimized. Not only is the power flow of the transmission line on which a fault occurs assessed, but the effects of other power flows surrounding the fault point are included in the analysis to decide the precise stability limit. The online TSC system can also reflect the constraints and priorities of each generator to be shed. To ensure a smooth restoration after the fault, restart time of shut off generators, for instance, can also be included.
  • When constructing new transmission lines, numerous off-line studies assuming various power flow patterns are required to support off-line SPS. After introduction of the online TSC system, new construction of transmission lines was more efficient by changing the equipment database for the simulation in the TSC-P.

In 2003, this CEPCO system received the 44th Annual Edison Award from the Edison Electric Institute (EEI), recognizing CEPCO’s achievement with the world’s first application of this type of system, and the contribution of the system to efficient power management.

Today, benefits continue to accrue. A new TSC-P, which adopts the latest high-performance computation servers, is now under construction for operation in 2009 [3]. The new system will shorten the calculation interval from every five minutes to every 30 seconds in order to reflect power system situations as precisely as possible. This interval was determined by the analysis of various stability situations recorded by the current TSC-P over more than 10 years of operation.

Additionally, although the current TSC-P uses the same online data as used by EMS/ SCADA, it can control emergency actions against small signal instability by receiving phasor measurement unit (PMU) data to detect divergences of phasor angles and voltages among the main substations.

Summary

The online TSC system is expected to realize optimum stabilization control of recent complicated power system conditions by obtaining power system information online and carrying out stability calculations at specific intervals. The online TSC will thus help utilities achieve better returns on investment in new or renovated transmission lines, reducing outage time and enabling a more efficient smart grid.

References

  1. Ota, Kitayama, Ito, Fukushima, Omata, Morita and Y. Kokai, “Development of Transient Stability Control System (TSC System) Based on Online Stability Calculation”, IEEE Trans. on Power System, Vol. 11, No. 3, pp. 1463-1472, August 1996.
  2. Koaizawa, Nakane, Omata and Y. Kokai, “Acutual Operating Experience of Online Transient Stability Control System (TSC System), IEEE PES Winter Meeting, 2000, Vol. 1, pp 84-89.
  3. Takeuchi, Niwa, Nakane and T. Miura
    “Performance Evaluation of the Online Transient Stability Control System (Online TSC System)”, IEEE PES General Meeting , June 2006.
  4. Takeuchi, Sato, Nishiiri, Kajihara, Kokai and M. Yatsu, “Development of New Technologies and Functions for the Online TSC System”, IEEE PES General Meeting , June 2006.

PHEVs Are on a Roll

The electric vehicle first made its appearance about a century ago, but it is only in recent years – months, to be more precise – that it has achieved breakthrough status as, quite possibly, the single-most important technological development having a positive impact on society today.

Climate change, over-dependence on fossil fuels, and the current economic crisis have combined to impact the automobile sector to a degree unforeseen, forcing technological innovation to direct its urgent attention toward the development of electric vehicles as an alternative means of transport, and a substitute for internal combustion engines. Many countries are supporting the approach in their political, energy and industrial planning directed toward the introduction of this type of vehicle. For example, the U.S. has a target of 1 million Plug-in Hybrid Electric Vehicles (PHEV) in operation by 2015. Spain expects to achieve the same number by 2014.

It is certainly true that there exist pressures capable of driving the introduction of the PHEV forward, but technological advances are the factors that underpin and give coherence to its development. There are several progressive improvements being made in technology, materials, and power generation and supply, which will support the deployment and use of electric vehicles in the coming years. They include: advances in battery manufacture and electronics (particularly in terms of power); the development of new communication protocols; ever more efficient and flexible information technologies; the growth of renewable energy sources in the electrical energy generation mix; and the concept of smart grids focused on more efficient electricity distribution. All of these improvements are underscored by a much greater degree of passion and personal involvement by the end-user.

Stakeholders and Utilities

With technology as the underlying catalyst, the scenario for electric vehicle use will include the impact and involvement of various stakeholders. This consists of: society itself, government and municipal entities, regulators, universities and research institutions, vehicle manufacturers, the ancillary automobile industry and its technological partners, battery manufacturers, the manufacturers of components, electrical and electronics systems, infrastructure suppliers, companies dedicated to mediation, billing and payment methods, ICT (Information and Communication Technology) companies, and of course, utilities.

If the electric vehicle is to become a genuinely alternative means of transportation, then this will depend on the involvement of, and interrelationship between, the above groups. One example of this is the formalizing of various agreements between certain stakeholders at both the national and international level (for example, Saab, Volvo, Wattenfall and ETC Battery in Sweden; Renault, PSA Peugeot Citroën, Toyota and EDF in France; and Iberdrola and General Motors at a global level) and the establishment of consortiums such as EDISON (Electric Vehicles in a Distributed and Integrated Market using Sustainable Energy and Open Networks) in Denmark.

If there is one dimension, however, which will be impacted most throughout the whole of the value chain, it is the electrical one. From power generation to retail, the introduction of this vehicle will require changes in current business models, and foreseeably, in utilities operational models. The short-term aim is to provide electrical energy for use in these vehicles in a more reliable and efficient way.

Battery Charging Impact

Given that charging could be the action having the greatest impact on the electrical sector, there are various alternatives for affecting this. These include:

  • Substitution. This involves a rapid exchange of vehicles and/or batteries, and the subsequent charging of both in an offline mode. It would require sharing of cars (vehicle usage and substitution) and battery charging stations for quick and automated battery exchange.
  • Direct Charging. This includes regular charging points situated in car parks, shopping centers and residences, and providing battery recharge while the vehicle is parked. There also need to be fast-charging points that could quickly charge a battery in 10 to 15 minutes.

To examine the advantages and disadvantages of the above methods, it helps to note the various pilot projects and research programs underway at both the conceptual and demonstration stages. These indicate the possibility of a coexistence scenario. Offline charging could be the least invasive method given the current system of fuel distribution. A network of “electricity stations” (as opposed to petrol stations) could provide a dedicated system of energy generation in a given location. As for direct charging, given the itinerant nature of user demand and his or her expected freedom to choose a particular charging method or location, this introduces an element of greater uncertainty, and impact on the electricity grid, requiring a system that better adapts to the lifestyle of the user.

Direct Charging and Its Impact on the Electricity Grid

Direct charging depends on various factors – notably battery characteristics (directly related to vehicle performance) and the range of time spans chosen to carry out the recharge. Associated with these are other variables: charging voltage, mode (DC, single-phase AC, and three-phase AC) and the characteristics of the charging systems employed: technology, components and their location, connectors, insulation, and the power and control electronics. All of these variables will influence the charging times, and will vary according to the power input (more power, less time) as shown in Figure 1. Therefore, depending on the kind of recharging, there will be an impact not only on the characteristics of the individual charging points but also on the supporting system.

Using extended range electrical vehicles (EREV) such as the Chevrolet Volt or Opel/Vauxhall Ampera as an example, it is estimated that annual home energy consumption from vehicle charging could be around 20 percent of the total, although some studies suggest this amount may be twice as much, based on the customer profile.

Based on the charging power input – and this is, of course, related to the methodology employed – it would be possible to fully recharge an EREV battery in about three hours. A fully charged battery would enable operation solely on electrical power for approximately 40 miles, a distance representing about 80 percent of daily car journeys based on the current averages. For a scenario like this it would be possible to use a charging method of about 4 kilowatt/220 volts.

If we analyze the impact in terms of energy supply and power capacity, there appears to be no medium-term problems in supporting these chargings, according to the data above. This is, however, a matter which depends on each individual country and also on the power transmission interconnections between them. In terms of the instantaneous power available, the charging method will have a greater or lesser impact, particularly on the distribution assets, depending on how it is carried out. Figure 2 shows how the power varies according to the charging method and the time of day when it is in use, taking into account the daily energy demand curve. We can, therefore, identify different scenarios from the most favourable (slow charging at off-peak times) to the most unfavourable (fast charging at peak times). With the latter we may find ourselves with distribution assets (e.g., transformers) incapable of supporting the heavy load of instant energy consumption.

It is necessary to link electric vehicle charging to the daily energy demand curve and instantaneous power availability in such a way that charging impacts the system as little as possible and maximizes the available energy resources. Ideally, there would be a move toward slow charging during off-peak periods. Furthermore, this kind of charging would not impact users as 90 percent of vehicles are not used between 11 a.m. and 6 p.m. Operating under such conditions would also permit the use of excess wind-generated power during off-peak times, enabling a clean locomotion device such as the PHEV to also use renewable (clean) energy as its primary source.

This all sounds reasonable, but the itinerant nature of roaming vehicle demand, together with relatively limited battery life, means that other variables such as home charging versus remote charging with the ability to measure consumption and set tariffs must be taken into account. What will be the charging price? How will charging be carried out when the vehicle is not parked at home, nor at its usual charging centre? What method will be used for making payments? Who will be involved in developing all this infrastructure and how will it all interrelate?

Smart Charging

One system providing answers to these questions is smart charging. Based on the concept, purpose and architecture of the smart grid, such technology can optimise charging in the most favorable way by considering several parameters. These may include: the current state of the electrical system; the battery charging level; tariff modes and associated demand-response models which may be applied (such as time of use, or TOU, tariffs); and the ability to use energy distributed and stored locally through an energy management system.

Smart charging would be capable of deciding when to charge in relation to different variables (for example, price and energy availability), and which energy sources to use (in-home energy storage, local and decoupled energy supply, plug-in to the distribution grid, etc.) Supporting the vehicle-to-grid (V2G) paradigm would enable managing and deciding not only when and how to best charge the vehicle, but also when to store energy in the vehicle battery that can later be returned to the grid for use in a local mode as a distributed energy source.

For all of this to be effective, a power and control electronics system (in both local and global mode), supported by information systems to manage those issues, is required. This will enable the optimal charging process (avoiding peak times, and doing fast charging only when necessary) and an intelligent measuring and tariff system. The latter may be either managed by utilities through advanced meter management (AMM), or virtually through energy tariffs and physical economic transactions. Such systems should allow for the interaction of various agents: end users, utilities, energy service companies (ESCO), infrastructure providers, banks and other method-of-payment companies.

Conclusion

Although there are still many unresolved issues around the introduction of electric vehicles (for example, incentives, carbon caps, tax collection, readiness of systems and business processes), the challenge associated with this means of locomotion and its effect on current business systems and models is a fascinating one. From an electrical viewpoint, there would not appear to be any significant impact on energy management in the medium term, but perhaps more so in terms of power requirements. As an example, some regions have adjusted to the massive introduction of air conditioning systems over recent years. While we are reassured as to the viability of electric vehicles, we are also alert to the possible significant impact of widespread vehicle charging, above all when considering a fast charging scenario.

The special characteristics of battery charging and its itinerant nature, the predicted volumes of power outlet and energy, the current state of tariff systems, the available technology, and the vision and state of deployment of smart grids and AMM, all add up to suggest a smart charging type of system would be the best option – though certainly complex to implement. Given the prominent role that information and communication technologies will play in such a system, it will be necessary to achieve consensus among various stakeholders over methodologies to be used, standards development, and in establishing a regulatory framework capable of supporting all the mechanisms and systems to be introduced.

We have already made good progress, and the electric vehicle could become an example that drives change in other business and technology models. It may well stimulate more rapid development of smart grids, encourage the creation of more efficient energy services and technologies, and lead to greater development and use of renewable energy sources, including a generation and distribution scenario based on the V2G paradigm.

It also may open the door to new businesses and stakeholders as well (such as the ESCOs) to introduce more dynamic, interactive demand response programs and broaden the function of battery storage as a provider of spinning reserves and ancillary services. These are all aspects for which it is now necessary to establish a basis for implementation and a short-term viability plan that will allow for the use of this technology with the aim of reaping its recognized benefits. Are we ready to step up to the challenge?

Thinking Smart

For more than 30 years, Newton- Evans Research Company has been studying the initial development and the embryonic and emergent stages of what the world now collectively terms the smart, or intelligent, grid. In so doing, our team has examined the technology behind the smart grid, the adoption and utilization rates of this technology bundle and the related market segments for more than a dozen or so major components of today’s – and tomorrow’s – intelligent grid.

This white paper contains information on eight of these key components of the smart grid: control systems, smart grid applications, substation automation programs, substation IEDs and devices, advanced metering infrastructure (AMI) and automated meter-reading devices (AMR), protection and control, distribution network automation and telecommunications infrastructure.

Keep in mind that there is a lot more to the smart grid equation than simply installing advanced metering devices and systems. A large AMI program may not even be the correct starting point for hundreds of the world’s utilities. Perhaps it should be a near-term upgrade to control center operations or to electronic device integration of the key substations, or an initial effort to deploy feeder automation or even a complete production and control (P&C) migration to digital relaying technology.

There simply is not a straightforward roadmap to show utilities how to develop a smart grid that is truly in that utility’s unique best interests. Rather, each utility must endeavor to take a step back and evaluate, analyze and plan for its smart grid future based on its (and its various stakeholders’) mission, its role, its financial and human resource limitations and its current investment in modern grid infrastructure and automation systems and equipment.

There are multiple aspects of smart grid development, some of which involve administrative as well as operational components of an electric power utility, and include IT involvement as well as operations and engineering; administrative management of customer information systems (CIS) and geographic information systems (GIS) as well as control center and dispatching operation of distribution and outage management systems (DMS and OMS); substation automation as well as true field automation; third-party services as well as in-house commitment; and of course, smart metering at all levels.

Space Station

I have often compared the evolution of the smart grid to the iterative process of building the international space station: a long-term strategy, a flexible planning environment, responsive changes incorporated into the plan as technology develops and matures, properly phased. What function we might need is really that of a skilled smart grid architect to oversee the increasingly complex duties of an effective systems planning organization within the utility organization.

All of these soon-to-be-interrelated activities need to be viewed in light of the value they add to operational effectiveness and operating efficiencies as well as the effect of their involvement with one another. If the utility has not yet done so, it must strive to adopt a systems-wide approach to problem solving for any one grid-related investment strategy. Decisions made for one aspect of control and automation will have an impact on other components, based on the accumulated 40 years of utility operational insights gained in the digital age.

No utility can today afford to play whack-a-mole with its approach to the intelligent grid and related investments, isolating and solving one problem while inadvertently creating another larger or more costly problem elsewhere because of limited visibility and “quick fix” decision making.

As these smart grid building blocks are put into service, as they become integrated and are made accessible remotely, the overall smart grid necessarily becomes more complex, more communications-centric and more reliant on sensor-based field developments.

In some sense, it reminds one of building the space station. It takes time. The process is iterative. One component follows another, with planning on a system-wide basis. There are no quick solutions. Everything must be very systematically approached from the outset.

Buckets of Spending

We often tackle questions about the buckets of spending for smart grid implementations. This is the trigger for the supply side of the smart grid equation. Suppliers are capable of developing, and will make the required R&D investment in, any aspect of transmission and distribution network product development – if favorable market conditions exist or if market outlooks can be supported with field research. Hundreds of major electric power utilities from around the world have already contributed substantially to our ongoing studies of smart grid components.

In looking at the operational/engineering components of smart grid developments, centering on the physical grid itself (whether a transmission grid, a distribution grid or both), one must include what today comprises P&C, feeder and switch automation, control center-based systems, substation measurement and automation systems, and other significant distribution automation activities.

On the IT and administrative side of smart grid development, one has to include the upgrades that will definitely be required in the near- or mid-term, including CIS, GIS, OMS and wide area communications infrastructure required as the foundation for automatic metering. Based on our internal estimates and those of others, spending for grid automation is pegged for 2008 at or slightly above $1 billion nationwide and will approach $3.5 billion globally. When (if) we add in annual spending for CIS, GIS, meter data management and communications infrastructure developments, several additional billions of dollars become part of the overall smart grid pie.

In a new question included in the 2008 Newton-Evans survey of control center managers, these officials were asked to check the two most important components of near-term (2008-2010) work on the intelligent grid. A total of 136 North American utilities and nearly 100 international utilities provided their comments by indicating their two most important efforts during the planning horizon.

On a summary basis, AMI led in mentions from 48 percent of the group. EMS/ SCADA investments in upgrades, new applications, interfaces et al was next, mentioned by 42 percent of the group. Distribution automation was cited by 35 percent as well.

Spending Outlook

The financial environment and economic outlook do not bode well for many segments of the national and global economies. One question we have continuously been asked well into this year is whether the electric power industry will suffer the fate of other industries and significantly scale back planned spending on T&D automation because of possible revenue erosion given the slowdown and fallout from this year’s difficult industrial and commercial environments.

Let’s first take a summary look at each of the five major components of T&D automation because these all are part and parcel of the operations/engineering view of the smart grid of the future.

Control Systems Outlook: Driven by SCADA-like systems and including energy management systems and distribution management software, this segment of the market is hovering around the $500 million mark on a global scale – excluding the values of turn-key control center projects (engineering, procurement and construction (EPC) of new control center facilities and communications infrastructure). We see neither growth nor erosion in this market for the near-term, with some up-tick in spending for new applications software and better visualization tools to compensate for the “aging” of installed systems. While not a control center-based system, outage management is a closely aligned technology development, and will continue to take hold in the global market. Sales of OMS software and platforms are already approaching the $100 million mark led by the likes of Oracle Utilities, Intergraph and MilSoft.

Substation Automation and Integration Programs: The market for substation IEDs, for new communications implementations and for integration efforts has grown to nearly $500 million. Multiyear programs aimed at upgrading, integrating and automating the existing global base of about a quarter million or so transmission and primary distribution substations have been underway for some time. Some programs have been launched in 2008 that will continue into 2011. We see a continuation of the growth in spending for critical substation A&I programs, albeit 2009 will likely see the slowest rate of growth in several years (less than 3 percent) if the current economic malaise holds up through the year. Continuing emphasis will be on HV transmission substations as the first priority for upgrades and addition of more intelligent electronic devices.

AMI/AMR: This is the lynchpin for the smart grid in the eyes of many industry observers, utility officials and perhaps most importantly, regulators at the state and federal levels of the U.S., Canada, Australia and throughout Western Europe. With nearly 1.5 billion electricity meters installed around the world, and about 93 percent being electro-mechanical, interest in smart metering can also be found in dozens of other countries, including Indonesia, Russia, Honduras, Malaysia, Australia, and Thailand. Another form of smart meters, the prepayment meter, is taking hold in some of the developing nations of the world. The combined resources of Itron, coupled with its Actaris acquisition, make this U.S. firm the global share leader in sales and installations of AMI and AMR systems and meters.

Protection and Control: The global market for protective relays, the foundation for P&C has climbed well above $1.5 billion. Will 2009 see a drop in spending for protective relays? Not likely, as these devices continue to expand in capabilities, and undertake additional functions (sequence of event recording, fault recording and analysis, and even acting as a remote terminal unit). To the surprise of many, there is still a substantial amount (perhaps as much as $125 million) being spent annually for electro-mechanical relays nearly 20 years into the digital relay era. The North American leader in protective relay sales to utilities is SEL, while GE Multilin continues to hold a leading share in industrial markets.

Distribution Automation: Today, when we discuss distribution automation, the topic can encompass any and all aspects of a distribution network automation scheme, from the control center-based SCADA and distribution management system on out to the substation, where RTUs, PLCs, power meters, digital relays, bay controllers and a myriad of communicating devices now help operate, monitor and control power flow and measurement in the medium voltage ranges.

Nonetheless, it is beyond the substation fence, reaching further down into the primary and secondary network, where we find reclosers, capacitors, pole top RTUs, automated overhead switches, automated feeders, line reclosers and associated smart controls. These are the new smart devices that comprise the basic building blocks for distribution automation. The objective will be achieved with the ability to detect and isolate faults at the feeder level, and enable ever faster service restoration. With spending approaching $1 billion worldwide, DA implementations will continue to expand over the coming decade, nearing $2.6 billion in annual spending by 2018.

Summary

The T&D automation market and the smart grid market will not go away this year, nor will it shrink. When telecommunications infrastructure developments are included, about $5 billion will have been spent in 2008 for global T&D automation programs. When AMI programs are adding into the mix, the total exceeds $7 billion. T&D automation spending growth will likely be subdued, perhaps into 2010. However, the overall market for T&D automation is likely to be propped up to remain at or near current levels of spending for 2009 and into 2010, benefiting from the continued regulatory-driven momentum for AMI/ AMR, renewable portfolio standards and demand response initiatives. By 2011, we should once again see healthier capital expenditure budgets, prompting overall T&D automation spending to reach about $6 billion annually. Over the 2008-2018 periods, we anticipate more than $75 billion in cumulative smart grid expenditures.

Expenditure Outlook

Newton-Evans staff has examined the current outlook for smart grid-related expenditures and has made a serious attempt to avoid double counting potential revenues from all of the components of information systems spending and the emerging smart grid sector of utility investment.

While the enterprise-wide IT portions (blue and red segments) of Figure 1 include all major components of IT (hardware, software, services and staffing), the “pure” smart grid components tend to be primarily in hardware, in our view. Significant overlap with both administrative and operational IT supporting infrastructure is a vital component for all smart grid programs underway at this time.

Between “traditional IT” and the evolving smart grid components, nearly $25 billion will likely be spent this year by the world’s electric utilities. Nearly one-third of all 2009 information technology investments will be “smart grid” related.

By 2013, the total value of the various pie segments is expected to increase substantially, with “smart grid” spending possibly exceeding $12 billion. While this amount is generally understood to be conservative, and somewhat lower than smart grid spending totals forecasted by other firms, we will stand by our forecasts, based on 31 years of research history with electric power industry automation and IT topics.

Some industry sources may include the total value of T&D capital spending in their smart grid outlook.

But that portion of the market is already approaching $100 billion globally, and will likely top $120 billion by 2013. Much of that market would go on whether or not a smart grid is involved. Clearly, all new procurements of infrastructure equipment will be made with an eye to including as much smart content as is available from the manufacturers and integrators.

What we are limiting our definition to is edge investment, the components of the 21st century digital transport and delivery systems being added on or incorporated into the building blocks (power transformers lines, switchgear, etc.) of electric power transmission and delivery.

The Smart Grid: A Balanced View

Energy systems in both mature and developing economies around the world are undergoing fundamental changes. There are early signs of a physical transition from the current centralized energy generation infrastructure toward a distributed generation model, where active network management throughout the system creates a responsive and manageable alignment of supply and demand. At the same time, the desire for market liquidity and transparency is driving the world toward larger trading areas – from national to regional – and providing end-users with new incentives to consume energy more wisely.

CHALLENGES RELATED TO A LOW-CARBON ENERGY MIX

The structure of current energy systems is changing. As load and demand for energy continue to grow, many current-generation assets – particularly coal and nuclear systems – are aging and reaching the end of their useful lives. The increasing public awareness of sustainability is simultaneously driving the international community and national governments alike to accelerate the adoption of low-carbon generation methods. Complicating matters, public acceptance of nuclear energy varies widely from region to region.

Public expectations of what distributed renewable energy sources can deliver – for example, wind, photovoltaic (PV) or micro-combined heat and power (micro-CHP) – are increasing. But unlike conventional sources of generation, the output of many of these sources is not based on electricity load but on weather conditions or heat. From a system perspective, this raises new challenges for balancing supply and demand.

In addition, these new distributed generation technologies require system-dispatching tools to effectively control the low-voltage side of electrical grids. Moreover, they indirectly create a scarcity of “regulating energy” – the energy necessary for transmission operators to maintain the real-time balance of their grids. This forces the industry to try and harness the power of conventional central generation technologies, such as nuclear power, in new ways.

A European Union-funded consortium named Fenix is identifying innovative network and market services that distributed energy resources can potentially deliver, once the grid becomes “smart” enough to integrate all energy resources.

In Figure 1, the Status Quo Future represents how system development would play out under the traditional system operation paradigm characterized by today’s centralized control and passive distribution networks. The alternative, Fenix Future, represents the system capacities with distributed energy resources (DER) and demand-side generation fully integrated into system operation, under a decentralized operating paradigm.

CHALLENGES RELATED TO NETWORK OPERATIONAL SECURITY

The regulatory push toward larger trading areas is increasing the number of market participants. This trend is in turn driving the need for increased network dispatch and control capabilities. Simultaneously, grid operators are expanding their responsibilities across new and complex geographic regions. Combine these factors with an aging workforce (particularly when trying to staff strategic processes such as dispatching), and it’s easy to see why utilities are becoming increasingly dependent on information technology to automate processes that were once performed manually.

Moreover, the stochastic nature of energy sources significantly increases uncertainty regarding supply. Researchers are trying to improve the accuracy of the information captured in substations, but this requires new online dispatching stability tools. Additionally, as grid expansion remains politically controversial, current efforts are mostly focused on optimizing energy flow in existing physical assets, and on trying to feed asset data into systems calculating operational limits in real time.

Last but not least, this enables the extension of generation dispatch and congestion into distribution low-voltage grids. Although these grids were traditionally used to flow energy one way – from generation to transmission to end-users – the increasing penetration of distributed resources creates a new need to coordinate the dispatch of these resources locally, and to minimize transportation costs.

CHALLENGES RELATED TO PARTICIPATING DEMAND

Recent events have shown that decentralized energy markets are vulnerable to price volatility. This poses potentially significant economic threats for some nations because there’s a risk of large industrial companies quitting deregulated countries because they lack visibility into long-term energy price trends.

One potential solution is to improve market liquidity in the shorter term by providing end-users with incentives to conserve energy when demand exceeds supply. The growing public awareness of energy efficiency is already leading end-users to be much more receptive to using sustainable energy; many utilities are adding economic incentives to further motivate end-users.

These trends are expected to create radical shifts in transmission and distribution (T&D) investment activities. After all, traditional centralized system designs, investments and operations are based on the premise that demand is passive and uncontrollable, and that it makes no active contribution to system operations.

However, the extensive rollout of intelligent metering capabilities has the potential to reverse this, and to enable demand to respond to market signals, so that end-users can interact with system operators in real or near real time. The widening availability of smart metering thus has the potential to bring with it unprecedented levels of demand response that will completely change the way power systems are planned, developed and operated.

CHALLENGES RELATED TO REGULATION

Parallel with these changes to the physical system structure, the market and regulatory frameworks supporting energy systems are likewise evolving. Numerous energy directives have established the foundation for a decentralized electricity supply industry that spans formerly disparate markets. This evolution is changing the structure of the industry from vertically integrated, state-owned monopolies into an environment in which unbundled generation, transmission, distribution and retail organizations interact freely via competitive, accessible marketplaces to procure and sell system services and contracts for energy on an ad hoc basis.

Competition and increased market access seem to be working at the transmission level in markets where there are just a handful of large generators. However, this approach has yet to be proven at the distribution level, where it could facilitate thousands and potentially millions of participants offering energy and systems services in a truly competitive marketplace.

MEETING THE CHALLENGES

As a result, despite all the promise of distributed generation, the current decentralized system will become increasingly unstable without the corresponding development of technical, market and regulatory frameworks over the next three to five years.

System management costs are increasing, and threats to system security are a growing concern as installed distributed generating capacity in some areas exceeds local peak demand. The amount of “regulating energy” provisions rises as stress on the system increases; meanwhile, governments continue to push for distributed resource penetration and launch new energy efficiency ideas.

At the same time, most of the large T&D utilities intend to launch new smart grid prototypes that, once stabilized, will be scalable to millions of connection points. The majority of these rollouts are expected to occur between 2010 and 2012.

From a functionality standpoint, the majority of these associated challenges are related to IT system scalability. The process will require applying existing algorithms and processes to generation activities, but in an expanded and more distributed manner.

The following new functions will be required to build a smart grid infrastructure that enables all of this:

New generation dispatch. This will enable utilities to expand their portfolios of current-generation dispatching tools to include schedule-generation assets for transmission and distribution. Utilities could thus better manage the growing number of parameters impacting the decision, including fuel options, maintenance strategies, the generation unit’s physical capability, weather, network constraints, load models, emissions (modeling, rights, trading) and market dynamics (indices, liquidity, volatility).

Renewable and demand-side dispatching systems. By expanding current energy management systems (EMS) capability and architecture, utilities should be able to scale to include millions of active producers and consumers. Resources will be distributed in real time by energy service companies, promoting the most eco-friendly portfolio dispatch methods based on contractual arrangements between the energy service providers and these distributed producers and consumers.

Integrated online asset management systems. new technology tools that help transmission grid operators assess the condition of their overall assets in real time will not only maximize asset usage, but will lead to better leveraging of utilities’ field forces. new standards such as IEC61850 offer opportunities to manage such models more centrally and more consistently.

Online stability and defense plans. The increasing penetration of renewable generation into grids combined with deregulation increases the need for fl ow control into interconnections between several transmission system operators (TSOs). Additionally, the industry requires improved “situation awareness” tools to be installed in the control centers of utilities operating in larger geographical markets. Although conventional transmission security steady state indicators have improved, utilities still need better early warning applications and adaptable defense plan systems.

MOVING TOWARDS A DISTRIBUTED FUTURE

As concerns about energy supply have increased worldwide, the focus on curbing demand has intensified. Regulatory bodies around the world are thus actively investigating smart meter options. But despite the benefits that smart meters promise, they also raise new challenges on the IT infrastructure side. Before each end-user is able to flexibly interact with the market and the distribution network operator, massive infrastructure re-engineering will be required.

nonetheless, energy systems throughout the world are already evolving from a centralized to a decentralized model. But to successfully complete this transition, utilities must implement active network management through their systems to enable a responsive and manageable alignment of supply and demand. By accomplishing this, energy producers and consumers alike can better match supply and demand, and drive the world toward sustainable energy conservation.

Real-Time Automation Solutions for Operation of Energy Assets and Markets

Areva T&D offers solutions to bring electricity from the source to end-users, building high- and medium-voltage substations and develops technologies to manage power grids and energy markets worldwide. It is a full-fl edged solution provider, offering safe, reliable, efficient power distribution down to the lowest level end-user consumption. Its software applications cover all the strategic operational business processes of an energy utility, including optimization of transmission and distribution grid operation; management of wholesale and retail market operations; and energy transaction solutions involving strategic business processes from energy trading, energy scheduling and dispatch management to demand-side management and settlements.

As long as advanced monitoring and control infrastructures have been used for grid management, Areva T&D has been at the forefront of innovation. Its strategy has always been to supply the most accurate real-time vision of the network infrastructure. This has led to several major breakthroughs, including Areva’s latest e-terraVision™ product.

The e-terraVision technology provides control rooms with higher level decision support capabilities through visualization tools, “smart applications” and simulation – thus improving situation awareness. This operator-friendly system enables power dispatchers to fully visualize their networks with the right level of situation awareness and proactively operate the grid by taking the necessary real-time corrective actions.

Expertise acquired in the high-voltage network enables Areva to supply distribution monitoring and control applications as well, and these have greatly influenced its distribution management strategy. As a result of early successes, the company developed an adapted eterra product offer for distribution customers.

Areva T&D continues to integrate unique new concepts to meet market trends and innovation. For example, Areva T&D SmartGrid solutions are designed to supply the following benefits.

  1. Alignment with deregulation trends in the consumer electricity market, including:
    • Making the process of changing energy supplier easier;
    • Providing better service quality for energy usage, including accurate and appropriate billing of actual consumed energy;
    • For specific countries where nontechnical losses are significant, allowing accurate audits to be conducted; and
    • Allowing for differentiated energy offerings with greater pricing flexibility and integration of renewable energy offers.
  2. Support for further structural benefits discussed and validated as part of international working groups on SmartGrid initiatives:
    • Better selectivity of the IEDs in medium- and low-voltage leads to reduce the number of customers affected by outages, thus improving service quality and reducing maintenance costs.
    • Careful monitoring of low-voltage grids, including consumption by phase and distribution cell – which is especially relevant in terms of renewable energy generation.
    • Online asset monitoring, which enables predictive maintenance, thus increasing assets’ life span.
    • Dynamic security management of primary and secondary networks. Introducing renewable energy sources into the distribution network poses a challenge. Combined infrastructures for monitoring systems for distribution and metering will be needed in the near future.

All these challenges have driven the definition and development of Areva SmartGrid solutions. The company’s enhanced supervision and control center products, including smart metering, supply all the advantages of automation technologies to distribution networks.