Alcatel-Lucent Your Smart Grid Partner

Alcatel-Lucent offers comprehensive capabilities that combine Utility industry – specific knowledge and experience with carrier – grade communications technology and expertise. Our IP/MPLS Transformation capabilities and Utility market – specific knowledge are the foundation of turnkey solutions designed to enable Smart Grid and Smart Metering initiatives. In addition, Alcatel-Lucent has specifically developed Smart Grid and Smart Metering applications and solutions that:

  • Improve the availability, reliability and resiliency of critical voice and data communications even during outages
  • Enable optimal use of network and grid devices by setting priorities for communications traffic according to business requirements
  • Meet NERC CIP compliance and cybersecurity requirements
  • Improve the physical security and access control mechanism for substations, generation facilities and other critical sites
  • Offer a flexible and scalable network to grow with the demands and bandwidth requirements of new network service applications
  • Provide secure web access for customers to view account, electricity usage and billing information
  • Improve customer service and experience by integrating billing and account information with IP-based, multi-channel client service platforms
  • Reduce carbon emissions and increase efficiency by lowering communications infrastructure power consumption by as much as 58 percent

Working with Alcatel-Lucent enables Energy and Utility companies to realize the increased reliability and greater efficiency of next-generation communications technology, providing a platform for, and minimizing the risks associated with, moving to Smart Grid solutions. And Alcatel-Lucent helps Energy and Utility companies achieve compliance with regulatory requirements and reductions in operational expenses while maintaining the security, integrity and high availability of their power infrastructure and services. We build Smart Networks to support the Smart Grid.

American Recovery and Reinvestment Act of 2009 Support from Alcatel-Lucent

The American Recovery and Reinvestment Act (ARRA) of 2009 was adopted by Congress in February 2009 and allocates $4.5 billion to the Department of Energy (DoE) for Smart Grid deployment initiatives. As a result of the ARRA, the DoE has established a process for awarding the $4.5 billion via investment grants for Smart Grid Research and Development, and Deployment projects. Alcatel-Lucent is uniquely qualified to help utilities take advantage of the ARRA Smart Grid funding. In addition to world-class technology and Smart Grid and Smart Metering solutions, Alcatel-Lucent offers turnkey assistance in the preparation of grant applications, and subsequent follow-up and advocacy with federal agencies. Partnership with Alcatel-Lucent on ARRA includes:

  • Design Implementation and support for a Smart Grid Network
  • Identification of all standardized and unique elements of each grant program
  • Preparation and Compilation of all required grant application components, such as project narratives, budget formation, market surveys, mapping, and all other documentation required for completion
  • Advocacy at federal, state, and local government levels to firmly establish the value proposition of a proposal and advance it through the entire process to ensure the maximum opportunity for success

Alcatel-Lucent is a Recognized Leader in the Energy and Utilities Market

Alcatel-Lucent is an active and involved leader in the Energy and Utility market, with active membership and leadership roles in key Utility industry associations, including the Utility Telecom Council (UTC), the American Public Power Association (APPA), and Gridwise. Gridwise is an association of Utilities, industry research organizations (e.g., EPRI, Pacific Northwest National Labs, etc.), and Utility vendors, working in cooperation with DOE to promote Smart Grid policy, regulatory issues, and technologies (see www.gridwise.org for more info). Alcatel-Lucent is also represented on the Board of Directors for UTC’s Smart Network Council, which was established in 2008 to promote and develop Smart Grid policies, guidelines, and recommended technologies and strategies for Smart Grid solution implementation.

Alcatel-Lucent IP MPLS Solution for the Next Generation Utility Network

Utility companies are experienced at building and operating reliable and effective networks to ensure the delivery of essential information and maintain flawless service delivery. The Alcatel-Lucent IP/MPLS solution can enable the utility operator to extend and enhance its network with new technologies like IP, Ethernet and MPLS. These new technologies will enable the utility to optimize its network to reduce both CAPEX and OPEX without jeopardizing reliability. Advanced technologies also allow the introduction of new Smart Grid applications that can improve operational and workflow efficiency within the utility. Alcatel-Lucent leverages cutting edge technologies along with the company’s broad and deep experience in the utility industry to help utility operators build better, next-generation networks with IP/MPLS.

Alcatel-Lucent has years of experience in the development of IP, MPLS and Ethernet technologies. The Alcatel-Lucent IP/MPLS solution offers utility operators the flexibility, scale and feature sets required for mission-critical operation. With the broadest portfolio of products and services in the telecommunications industry, Alcatel-Lucent has the unparalleled ability to design and deliver end-to-end solutions that drive next-generation utility networks.

About Alcatel-Lucent

Alcatel-Lucent’s vision is to enrich people’s lives by transforming the way the world communicates. As a leader in utility, enterprise and carrier IP technologies, fixed, mobile and converged broadband access, applications, and services, Alcatel-Lucent offers the end-to-end solutions that enable compelling communications services for people at work, at home and on the move.

With 77,000 employees and operations in more than 130 countries, Alcatel-Lucent is a local partner with global reach. The company has the most experienced global services team in the industry, and Bell Labs, one of the largest research, technology and innovation organizations focused on communications. Alcatel-Lucent achieved adjusted revenues of €17.8 billion in 2007, and is incorporated in France, with executive offices located in Paris.

The Smart Grid Gets Real

Utilities around the world are facing a future that demands technology and service to better measure, manage and control distributed resources. Sensus has anticipated that future with real-world solutions that are already at work in millions of households today. As a leading provider of advanced metering and related communications technologies to utilities worldwide, Sensus has been aggressively pushing the boundaries of utility management. Our innovative communication systems enable utilities to intelligently utilize their resources with unprecedented efficiency.

FlexNet Smart Grid Solution

FlexNet is the electric utility industry’s most powerful AMI solution. It meets AMI requirements of today; ubiquity, redundancy, security and demand response, and is smart grid ready. FlexNet is simple; its lean architecture uses a powerful, industry-leading two Watts of radio power to transmit information that maximizes range and minimizes operational costs with low infrastructure requirements. FlexNet insures sustainability, protecting the utility infrastructure investment and uninterrupted delivery.

Every FlexNet endpoint is equipped with the ability to accept downloadable revised code; modulations, protocols, frequency of operation, even data rate can be fully upgraded as future requirements and features are developed. Sensus FlexNet further mitigates risk by using APA™ (All Paths Always) technology; this ultimate form of self-healing ensures critical messages are delivered without re-routing delay.

iCon Smart Meters

The iCon line of solid state smart meters integrates seamlessly with the FlexNet AMI solution. Communication vendors and metrology engineers nationwide consistently find that the advanced family of Sensus meters provides complete functionality, superior reliability, flexible integration capability, industry standards compatibility, and economical value. The modular mechanical, electrical, and software designs, in combination with the advanced sensing capability, predictably deliver the speed, accuracy, and reliability required to meet today’s electric utility needs. With an unsurpassed accuracy exceeding ANSI C12.20 (Class 0.2), the iCon Meter by Sensus is built with a backbone of reliability and precision.

Ontario Pilot

Smart metering technologies are making it possible to provide residential utility customers with the sophisticated “smart pricing” options once available only to larger commercial and industrial customers. When integrated with appropriate data manipulation and billing systems, smart metering systems can enable a number of innovative pricing and service regimes that shift or reduce energy consumption.

In addition, by giving customers ready access to up-to-date information about their energy demand and usage through a more informative bill, an in-home display monitor or an enhanced website, utilities can supplement smart pricing options and promote further energy conservation.

SMART PRICES

Examples of smart pricing options include:

  • Time-of-use (TOU) is a tiered system where price varies consistently by day or time of day, typically with two or three price levels.
  • Critical peak pricing (CPP) imposes dramatically higher prices during specific days or hours in the year to reflect the actual or deemed price of electricity at that time.
  • Critical peak rebate (CPR) programs enable customers to receive rebates for using less power during specific periods.
  • Hourly pricing allows energy prices to change on an hourly basis in conformance with market prices.
  • Price adjustments reflect customer participation in load control, distributed generation or other programs.

SMART INFORMATION

Although time-sensitive pricing is designed primarily to reduce peak demand, these programs also typically result in a small reduction in overall energy consumption. This reduction is caused by factors independent of the primary objective of TOU pricing. These factors include the following:

  • Higher peak pricing causes consumers to eliminate, rather than merely delay, activities or habits that consume energy. Some of the load reductions that higher peak or critical peak prices produce are merely shifted to other time periods. For example, consumers do not stop doing laundry; they simply switch to doing it at non-peak times. In these cases the usage is “recovered.” Other load reductions, such as those resulting from consumers turning off lights or lowering heat, are not recovered, thus reducing the household’s total electricity consumption.
  • Dynamic pricing programs give participants a more detailed awareness of how they use electricity, which in turn results in lower consumption.
  • These programs usually increase the amount of usage information or feedback received by the customer, which also encourages lower consumption.

The key challenge for utilities and policy makers comes in deciding which pricing and communications structures will most actively engage their customers and drive the desired conservation behaviors. Studies show that good customer feedback on energy usage can reduce total consumption by 5 to 10 percent. Smart meters let customers readily access more up-to-date information about their hourly, daily and monthly energy usage via in-home displays, websites and even monthly bill inserts.

The smart metering program undertaken by the province of Ontario, Canada, presents one approach and serves as a useful example for utility companies contemplating similar deployments.

ONTARIO’S PROGRAM

In 2004, anticipating a serious energy generation shortfall in coming years, the government of Ontario announced plans to have smart electricity meters installed in 800,000 homes and small businesses by the end of 2007, and throughout Ontario by 2010. The initiative will affect approximately 4.5 million customers.

As the regulator of Ontario’s electricity industry, the Ontario Energy Board (OEB) was responsible for designing the smart prices that would go with these smart meters. The plan was to introduce flexible, time-of-use electricity pricing to encourage conservation and peak demand shifting. In June 2006, the OEB commissioned IBM to manage a pilot program that would help determine the best structure for prices and the best ways to communicate these prices.

By Aug. 1, 2006, 375 residential customers in the Ottawa area of Ontario had been recruited into a seven-month pilot program. Customers were promised $50 as an incentive for remaining on the pilot for the full period and $25 for completing the pilot survey.

Pilot participants continued to receive and pay their “normal” bimonthly utility bills. Separately, participants received monthly electricity usage statements that showed their electricity supply charges on their respective pilot price plan, as illustrated in Figure 1. Customers were not provided with any other new channels for information, such as a website or in-home display.

A control group that continued being billed at standard rates was also included in the study. Three pricing structures were tested in the pilot, with 125 customers in each group:

  • Time-of-use (TOU). Ontario’s TOU pricing includes off-peak, mid-peak and peak prices that changed by winter and summer season.
  • TOU with CPP. Customers were notified a day in advance that the price of the electricity commodity (not delivery) for three or four hours the next day would increase to 30 cents per kilowatt hour (kWh) – nearly six times the average TOU price. Seven critical peak events were declared during the pilot period – four in summer and three in winter. Figure 2 shows the different pricing levels.
  • TOU with CPR. During the same critical peak hours as CPP, participants were provided a rebate for reductions below their “baseline” usage. The base was calculated as the average usage for the same hours of the five previous nonevent, non-holiday weekdays, multiplied by 125 percent.

The results from the Ontario pilot clearly demonstrate that customers want to be engaged and involved in their energy service and use. Consider the following:

  • Within the first week, and before enrollment was suspended, more than 450 customers responded to the invitation letter and submitted requests to be part of the pilot – a remarkable 25 percent response rate. In subsequent focus groups, participants emphasized a desire to better monitor their own electricity usage and give the OEB feedback on the design of the pricing. These were in fact the primary reasons cited for enrolling in the pilot.
  • In comparison to the control group, total load shifting during the four summertime critical peak periods ranged from 5.7 percent for TOU-only participants to 25.4 percent for CPP participants.
  • By comparing the usage of the treatment and control groups before and during the pilot, a substantial average conservation effect of 6 percent was recorded across all customers.
  • Over the course of the entire pilot period, on average, participants shifted consumption and paid 3 percent, or $1.44, less on monthly bills with the TOU pilot prices, compared with what they would have paid using the regular electricity prices charged by their utility. Of all participants, 75 percent saved money on TOU prices. Figure 3 illustrates the distribution of savings.
  • When this shift in consumption was combined with the reduction in customers’ overall consumption, a total average monthly savings of more than $4 resulted. From this perspective, 93 percent of customers would pay less on the TOU prices over the course of the pilot program than they would have with the regular electricity prices charged by their utility.
  • Citing greater control of their energy costs and benefits to the environment, 7 percent of participants surveyed said they would recommend TOU pricing to their friends.

There were also some unexpected results. For instance, there was no pattern of customers shifting demand away from the dinnertime peak period in winter. In addition, TOU-only pricing alone did not result in a statistically significant shifting of power away from peak periods.

CONCLUSION

In summary, participants in the Ontario Energy Board’s pilot program approved of these smarter pricing structures, used less energy overall, shifted consumption from peak periods in the summertime and, as a result, most paid less on their utility bills.

Over the next decade, as the utility industry evolves to the intelligent utility network and smart metering technologies are deployed to all customers, utilities will have many opportunities to implement new electricity pricing structures. This transition will represent a considerable technical challenge, testing the limits of the latest communications, data management, engineering, metering and security technologies.

But the greater challenge may come from customers. Much of the benefit from smart metering is directly tied to real, measurable and predictable changes in how customers use energy and interact with their utility provider. Capturing this benefit requires successful manipulation of the complex interactions of economic incentives, consumer behavior and societal change. Studies such as the OEB Smart Pricing Pilot provide another step in penetrating this complexity, helping the utility industry better understand how customers react and interact with these new approaches.

About Alcatel-Lucent

Alcatel-Lucent’s vision is to enrich people’s lives by transforming the way the world communicates. Alcatel-Lucent provides solutions that enable service providers, enterprises and governments worldwide to deliver voice, data and video communication services to end users. As a leader in carrier and enterprise IP technologies; fixed, mobile and converged broadband access; applications and services, Alcatel-Lucent offers the end-to-end solutions that enable compelling communications services for people at work, at home and on the move.

With 77,000 employees and operations in more than 130 countries, Alcatel-Lucent is a local partner with global reach. The company has the most experienced global services team in the industry and includes Bell labs, one of the largest research, technology and innovation organizations focused on communications. Alcatel-Lucent achieved adjusted revenues of €17.8 billion in 2007, and is incorporated in France, with executive offices located in Paris.

YOUR ENERGY AND UTILITY PARTNER

Alcatel-Lucent offers comprehensive capabilities that combine carrier-grade communications technology and expertise with utility industry- specific knowledge. Alcatel-Lucent’s IP transformation expertise and utility market-specific knowledge have led to the development of turnkey communications solutions designed for the energy and utility market. Alcatel-Lucent has extensive experience in:

  • Transforming and renewing network technologies;
  • designing and implementing SmartGrid initiatives;
  • Meeting NERC CIP compliance and security requirements;
  • Working in live power generation, transmission and distribution environments;
  • Implementing and managing complex mission-critical communications projects;
  • developing best-in-class partnerships with organizations like CURRENT Communications, Ambient, BelAir networks, Alvarion and others in the utility industry.

Working with Alcatel-Lucent enables energy and utility companies to realize the increased reliability and greater efficiency of next-generation communications technology, providing a platform for – and minimizing the risks associated with – moving to SmartGrid solutions. And Alcatel-Lucent helps energy and utility companies achieve compliance with regulatory requirements and reduce operational expenses while maintaining the security, integrity and high availability of their power infrastructure and services.

ALCATEL-LUCENT IP MPLS SOLUTION FOR THE NEXT-GENERATION UTILITY NETWORK

Utility companies are experienced at building and operating reliable and effective networks to ensure the delivery of essential information and maintain fl awless service delivery. The Alcatel-Lucent IP/MPLS solution can enable utility operators to extend and enhance their networks with new technologies like IP, Ethernet and MPLS. These new technologies will enable the utility to optimize its network to reduce both capital expenditures and operating expenses without jeopardizing reliability. Advanced technologies also allow the introduction of new applications that can improve operational and workflow efficiency within the utility. Alcatel-Lucent leverages cutting-edge technologies along with the company’s broad and deep experience in the utility industry to help utility operators build better, next-generation networks with IP/MPLS.

THE ALCATEL-LUCENT ADVANTAGE

Alcatel-Lucent has years of experience in the development of IP, MPLS and Ethernet technologies. The Alcatel-Lucent IP/MPLS solution offers utility operators the flexibility, scale and feature sets required for mission-critical operation. With the broadest portfolio of products and services in the telecommunications industry, Alcatel-Lucent has the unparalleled ability to design and deliver end-to-end solutions that drive next-generation communications networks.

Pepco Holdings, Inc.

The United States and the world are facing two preeminent energy challenges: the rising cost of energy and the impact of increasing energy use on the environment. As a regulated public utility and one of the largest energy delivery companies in the Mid-Atlantic region, Pepco Holdings Inc. (PHI) recognized that it was uniquely positioned to play a leadership role in helping meet both of these challenges.

PHI calls the plan it developed to meet these challenges the Blueprint for the Future (Blueprint). The plan builds on work already begun through PHI’s Utility of the Future initiative, as well as other programs. The Blueprint focuses on implementing advanced technologies and energy efficiency programs to improve service to its customers and enable them to manage their energy use and costs. By providing tools for nearly 2 million customers across three states and the district of Columbia to better control their electricity use, PHI believes it can make a major contribution to meeting the nation’s energy and environmental challenges, and at the same time help customers keep their electric and natural gas bills as low as possible.

The PHI Blueprint is designed to give customers what they want: reasonable and stable energy costs, responsive customer service, power reliability and environmental stewardship.

PHI is deploying a number of innovative technologies. Some, such as its automated distribution system, help to improve reliability and workforce productivity. Other systems, including an advanced metering infrastructure (AMI), will enable customers to monitor and control their electricity use, reduce their energy costs and gain access to innovative rate options.

PHI’s Blueprint is both ambitious and complex. Over the next five years PHI will be deploying new technologies, modifying and/or creating numerous information systems, redefining customer and operating work processes, restructuring organizations, and managing relationships with customers and regulators in four jurisdictions. PHI intends to do all of this while continuing to provide safe and reliable energy service to its customers.

To assist in developing and executing this plan, PHI reached out to peer utilities and vendors. One significant “partner” group is the Global Intelligent Utility network Coalition (GIUNC), established by IBM, which currently includes CenterPoint Energy (Texas), Country Energy (new South Wales, Australia) and PHI.

Leveraging these resources and others, PHI managers spent much of 2007 compiling detailed plans for realizing the Blueprint. Several aspects of these planning efforts are described below.

VISION AND DESIGN

In 2007, multiple initiatives were launched to flesh out the many aspects of the Blueprint. As Figure 1 illustrates, all of the initiatives were related and designed to generate a deployment plan based on a comprehensive review of the business and technical aspects of the project.

At this early stage, PHI does not yet have all the answers. Indeed, prematurely committing to specific technologies or designs for work that will not be completed for five years can raise the risk of obsolescence and lost investment. The deployment plan and system map, discussed in more detail below, are intended to serve as a guide. They will be updated and modified as decision points are reached and new information becomes available.

BUSINESS CASE VALIDATION

One of the first tasks was to review and define in detail the business case analyses for the project components. Both benefit assumptions and implementation costs were tested. Reference information (benchmarks) for this review came from a variety of sources: IBM experience in projects of similar scope and type; PHI materials and analysis; experiences reported by other GIUNC members; and other utilities and other publicly available sources. This information was compiled, and a present value analysis was conducted on discounted cash flow and rate of return, as shown in Figure 2.

In addition to an “operational benefits” analysis, PHI and the Brattle Group developed value assessments associated with demand response offerings such as critical peak pricing. With demand response, peak consumption can be reduced and capacity cost avoided. This means lower total energy prices for customers and less new capacity additions in the market. As Figure 2 shows, in even the worst-case scenario for demand response savings, operational and customer benefits will offset the cost of PHI’s AMI investment.

The information from these various cases has since been integrated into a single program management tool. Additional capabilities for optimizing results based on value, cost and schedule were developed. Finally, dynamic relationships between variables were modeled and added to the tool, recognizing that assumptions don’t always remain constant as plans are changed. One example of this would be the likely increase in call center cost per meter when deployment accelerates and customer inquiries increase.

HIGH-LEVEL COMMUNICATIONS ARCHITECTURE DESIGN

To define and develop the communications architecture, PHI deployed a structured approach built around IBM’s proprietary optimal comparative communications architecture methodology (OCCAM). This methodology established the communications requirements for AMI, data architecture and other technologies considered in the Blueprint. Next, an evaluation of existing communications infrastructure and capabilities was conducted, which could be leveraged in support of the new technologies. Then, alternative solutions to “close the gap” were reviewed. Finally, all of this information was incorporated in an analytical tool that matched the most appropriate communication technology within a specified geographic area and business need.

SYSTEM MAP AND INFORMATION MODEL

Defining the data framework and the approach to overall data integration elements across the program areas is essential if companies are to effectively and efficiently implement AMI systems and realize their identified benefits.

To help PHI understand what changes are needed to get from their current state to a shared vision of the future, the project team reviewed and documented the “current state” of the systems impacted by their plans. Then, subject matter experts with expertise in meters, billing, outage, system design, work and workforce management, and business data analysis were engaged to expand on the data architecture information, including information on systems, functions and the process flows that tie them all together. Finally, the information gathered was used to develop a shared vision of how PHI processes, functions, systems and data will fit together in the future.

By comparing the design of as-is systems with the to-be architecture of information management and information flows, PHI identified information gaps and developed a set of next steps. One key step establishes an “enterprise architecture” model for development. The first objective would be to establish and enforce governance policies. With these in place, PHI will define, draft and ratify detailed enterprise architecture and enforce priorities, standards, procedures and processes.

PHASE 2 DEPLOYMENT PLAN

Based on the planning conducted over the last half of the year, a high-level project plan for Phase 2 deployment was compiled. The focus was mainly on Blueprint initiatives, while considering dependencies and constraints reported in other transformation initiatives. PHI subject matter experts, project team leads and experience gathered from other utilities were all leveraged to develop the Blueprint deployment plan.

The deployment plan includes multiple types of tasks; processes; and organization, technical and project management office-related activities, and covers a period of five to six years. Initiatives will be deployed in multiple releases, phased across jurisdictions (Delaware, District of Columbia, Maryland, New Jersey) and coordinated between meter installation and communications infrastructure buildout schedules.

The plan incorporates several initiatives, including process design, system development, communications infrastructure and AMI, and various customer initiatives. Because these initiatives are interrelated and complex, some programmatic initiatives are also called for, including change management, benefits realization and program management. From this deployment plan, more detailed project plans and dependencies are being developed to provide PHI with an end-to-end view of implementation.

As part of the planning effort, key risk areas for the Blueprint program were also defined, as shown in Figure 3. Input from interviews and knowledge leveraged from similar projects were included to ensure a comprehensive understanding of program risks and to begin developing mitigation strategies.

CONCLUSION

As PHI moves forward with implementation of its AMI systems, new issues and challenges are certain to arise, and programmatic elements are being established to respond. A program management office has been established and continues to drive more detail into plans while tracking and reporting progress against active elements. AMI process development is providing the details for business requirements, and system architecture discussions are resolving interface issues.

Deployment is still in its early stages, and much work lies ahead. However, with the effort grounded in a clear vision, the journey ahead looks promising.

Real-Time Automation Solutions for Operation of Energy Assets and Markets

Areva T&D offers solutions to bring electricity from the source to end-users, building high- and medium-voltage substations and develops technologies to manage power grids and energy markets worldwide. It is a full-fl edged solution provider, offering safe, reliable, efficient power distribution down to the lowest level end-user consumption. Its software applications cover all the strategic operational business processes of an energy utility, including optimization of transmission and distribution grid operation; management of wholesale and retail market operations; and energy transaction solutions involving strategic business processes from energy trading, energy scheduling and dispatch management to demand-side management and settlements.

As long as advanced monitoring and control infrastructures have been used for grid management, Areva T&D has been at the forefront of innovation. Its strategy has always been to supply the most accurate real-time vision of the network infrastructure. This has led to several major breakthroughs, including Areva’s latest e-terraVision™ product.

The e-terraVision technology provides control rooms with higher level decision support capabilities through visualization tools, “smart applications” and simulation – thus improving situation awareness. This operator-friendly system enables power dispatchers to fully visualize their networks with the right level of situation awareness and proactively operate the grid by taking the necessary real-time corrective actions.

Expertise acquired in the high-voltage network enables Areva to supply distribution monitoring and control applications as well, and these have greatly influenced its distribution management strategy. As a result of early successes, the company developed an adapted eterra product offer for distribution customers.

Areva T&D continues to integrate unique new concepts to meet market trends and innovation. For example, Areva T&D SmartGrid solutions are designed to supply the following benefits.

  1. Alignment with deregulation trends in the consumer electricity market, including:
    • Making the process of changing energy supplier easier;
    • Providing better service quality for energy usage, including accurate and appropriate billing of actual consumed energy;
    • For specific countries where nontechnical losses are significant, allowing accurate audits to be conducted; and
    • Allowing for differentiated energy offerings with greater pricing flexibility and integration of renewable energy offers.
  2. Support for further structural benefits discussed and validated as part of international working groups on SmartGrid initiatives:
    • Better selectivity of the IEDs in medium- and low-voltage leads to reduce the number of customers affected by outages, thus improving service quality and reducing maintenance costs.
    • Careful monitoring of low-voltage grids, including consumption by phase and distribution cell – which is especially relevant in terms of renewable energy generation.
    • Online asset monitoring, which enables predictive maintenance, thus increasing assets’ life span.
    • Dynamic security management of primary and secondary networks. Introducing renewable energy sources into the distribution network poses a challenge. Combined infrastructures for monitoring systems for distribution and metering will be needed in the near future.

All these challenges have driven the definition and development of Areva SmartGrid solutions. The company’s enhanced supervision and control center products, including smart metering, supply all the advantages of automation technologies to distribution networks.

Delivering the Tools for Creating the Next-Generation Electrical SmartGrid

PowerSense delivers cutting-edge monitoring and control equipment together with integrated supervision to enable the modern electrical utility to prepare its existing power infrastructure for tomorrow’s SmartGrid.

PowerSense uses world-leading technology to merge existing and new power infrastructures into the existing SCADA and IT systems of the electrical utilities. This integration of the upgraded power infrastructure and existing IT systems instantly optimizes outage and fault management, thereby decreasing customer minutes lost (the System Average Interruption duration Index, or SAIDI).

At the same time, this integration helps the electrical utility further improve asset management (resulting in major cost savings) and power management (resulting in high-performance outage management and a high power efficiency). The PowerSense product line is called DISCOS® (for distribution networks, Integrated Supervision and Control System).

Discos®

The following outlines the business and system values offered by the DISCOS® product line.

Business Values

  • Cutting-edge optical technology (the sensor)
  • Easily and safely retrofitted (sensors can be fitted into all transformer types)
  • End-to-end solutions (from sensors to laptop)
  • Installation in steps (implementation based on cost-benefit analysis) system Values
  • Current (for each phase)
  • Voltage (for each phase)
  • Frequency
  • Power active, reactive and direction
  • Distance-to-fault measurement
  • Control of breakers and service relays
  • Analog inputs
  • Measurement of harmonic content for I and V
  • Measurement of earth fault

These parameters are available for both medium- and low-voltage power lines.

OPTICAL SENSOR TECHNOLOGY

With its stability and linearity, PowerSense’s cutting-edge sensor technology is setting new standards for current measurements in general. For PowerSense’s primary business area of MV grid monitoring in particular, it is creating a completely new set of standards for how to monitor the MV power grid.

The DISCOS® Current Sensor is part of the DISCOS® Opti module. The DISCOS® Sensor monitors the current size and angle on both the LV and MV side of the transformer.

BASED ON THE FARADAY EFFECT

Today, only a few applications in measuring instruments are based on the Faraday rotation principle. For instance, the Faraday effect has been used for measuring optical rotary power, for amplitude modulation of light and for remote sensing of magnetic fields.

now, due to advanced computing techniques, PowerSense is able to offer a low-priced optical sensor based on the Faraday effect.

THE COMPANY

PowerSense A/S was established on September 1, 2006, by DONG Energy A/S (formerly Nesa A/S) as a spin-off of the DISCOS® product line business. The purpose of the spin-off was to ensure the best future business conditions for the DISCOS® product line.

After the spin-off, BankInvest A/S, a Danish investment bank, holds 70 percent of the share capital. DONG Energy A/S continues to hold 30 percent of the share capital.

Meeting Future Utility Operating Challenges With a Smart Grid

The classical school of utility operations prescribes four priorities, ranked in the following descending order: safety, reliability, customer service and profit. Although it’s not hard to engage any number of industry insiders in an argument over whether profit in the classical model has recently switched places with customer service (and/or whether it should), most people accept that safety and reliability still reign supreme when it comes to operating a utility. This is true whether one takes a policy-, economic-, utility- or customer-oriented perspective.

Over many decades the utility industry has established a remarkably consistent pattern of power delivery based on the above-described priorities. Large, centralized generation facilities produce electricity from various sources interconnected via a networked transmission system feeding a predominantly radial distribution system. This classical power distribution system supports a predictable demand pattern that utilities can typically manage by using analytics such as similar day load forecasting. Moreover, future demand is also predictable, since average loads have been growing consistently by just a few percentage points annually, year in and year out.

To support this power delivery model, utilities also employ remarkably consistent system design and operational processes. Although any given utility might employ slightly different processes and procedures at varying degrees of efficiency and effectiveness – or deploy operating assets with slightly different design specifications – the underlying elements are generally consistent from one utility to another. They are engineered to either fail safe (safety) and/or not to fail at all (reliability) based on long-term operating patterns.

So why implement a smart grid? After all, the classical method of managing supply and demand has worked reasonably well over the decades. The system is safe and reliable, and most utilities are very profitable even in economic downtimes. However, a smart grid has three interrelated attributes – transparency, conditionality and kinematics – that together radically improve the “situational awareness” of the real-time state of the grid for both utilities and customers.

With this situational awareness comes the high system-state observability (transparency) that drives conditional management (conditionality) of the grid. All of this will ultimately support future power delivery patterns, which will be much more complex and difficult to predict and manage because demand and supply will fluctuate much more radically than at present (kinematics).

TRANSPARENCY

Price transparency is the foundation on which deregulated and competitive markets are built. However, until now price transparency has been limited primarily to wholesale transmission and generation domains. Indeed, the lack of price transparency at the point of distribution (that is, at retail) is a key reason deregulation has stalled in the United States.

Price transparency is of course only one aspect of the issue. Utilities must also synchronize usage transparency with price transparency based on time. That is, the value of knowing real-time pricing is diminished if a customer cannot also see their real-time usage and make energy usage behavior changes in relation to the real-time price signals.

From the utility’s perspective, usage transparency is limited. That’s because the distribution elements of most utility operations are largely opaque to operators. Once beyond the substation, usage disruptions are primarily identified by induction from fault conditions and usage patterns recorded a month after the disruption occurred via meter readings. For example, a distribution circuit may be substantially overloaded, but in most cases the utility won’t know until it fails. And when a failure does occur, utilities still depend on manual processes to determine the precise location and cause of the fault. The customer loads or network conditions that precipitated the failure can only be analyzed well after the event.

A smart grid significantly improves the level of visibility into the distribution grid. Smart meters, line sensors and the embedded processing that takes place within system assets such as switches and reclosers all provide a stream of real-time and near real-time data to the utility about the current operational state of the grid. The result: a dramatic improvement in utilities’ awareness of the state of the distribution grid.

CONDITIONALITY

As is the case with transparency, the consumer’s perspective of conditionality is more mature than the utility’s perspective. For example, the idea of the smart building is all about implementing a mini premise-side smart grid within the customer location and installing simple devices such as motion detectors that turn lights on or off in a room. Commercial energy management systems use even more sophisticated ways of optimizing the lighting, heating and other environmental parameters of a work or living space.

From the utility’s perspective, however, conditionality is much less advanced. In today’s operating world, most maintenance or repair activities take place either too late or too soon. When utilities wait until something in the infrastructure fails, it’s too late. If the grid is inspected based on some set time schedule irrespective of its condition, it’s too soon. Utilities thus fall into a pattern of either fault- or usage-based maintenance.

The alternative – condition-based maintenance – is already being used in many industries. The difference in the utilities industry is that outside of energy generation and transmission activities, there’s little data on the ongoing real-time condition of most of the assets a utility utilizes to provide its customers with service.

The chief benefit of conditionality is that it allows utilities to optimize asset utilization in both over- and under-use situations (Figure 1).

Conditionality also opens up opportunities for utilities to fully automate their utility distribution operations. Not only will this enable them to provide more reliable service to customers, it reduces the need for human intervention and thus dramatically cuts labor costs. In addition, automation can be used to mitigate the utilities industry’s looming problem of an aging workforce. For these and other reasons, conditionality is one of the most important contributions the smart grid will make to the industry.

KINEMATICS

In classical physics, kinematics studies how the position of an object changes with time. In today’s utility operations, neither load nor supply is particularly kinematical because changes to either take a long time and occur slowly (in normal operating conditions) and both can be reliably predicted.

Many industry observers, however, believe that this scenario is about to change dramatically. One thing that’s expected to drive this change is “distributed generation.” Under this scenario, instead of relying on large centralized generation, the industry will see significant growth in distribution-side generation technologies. Unlike today, much of this supply will not be centrally dispatched or under direct central control. The resulting energy supply will be much more complex to predict and manage. To the futurist this may seem like an exciting prospect, but to a grid operator or a utility, this represents a control and management nightmare, because it directly challenges the operational priorities of safety and reliability.

Hybrid and electric automobiles will also substantially alter the pattern of supply and load on the current grid. According to some predictions, electric automobiles will account for upwards of 20 percent of the automobile fleet in the United States in the coming decades. This means that millions of automobiles charging each night could increase customer load profiles over time by upwards of 30 to 50 percent. When coupled with even more futuristic ideas such as “vehicle to grid,” you end up with energy consumption scenarios that no one imagined when the grid was built.

CONCLUSION

The three attributes of the smart grid – transparency, conditionality and kinematics – are interrelated. Transparency provides situational awareness, which enables conditionality. And conditionality likewise is a requirement for managing the kinematic supply and load patterns of the future. But more importantly, the smart grid is the only way the classical operating priorities of the system can be sustained – or enhanced – given the upcoming expected changes to the industry.

Customer Service in the Brave New World of Today’s Utilities

A NEW GENERATION OF CUSTOMER

Today’s utility customers are energy dependant, information driven, technologically advanced, willing to change and environmentally friendly. Their grandparents prompted utilities to develop and offer levelized billing, and their parents created the need for online bill presentment and credit card payment. This new generation of customer is about to usher in a brave new world of utility customer service in which the real-time utility will conduct business 24 hours a day, seven days a week, 365 days a year, and Internet-savvy consumers will have all the capabilities of the current customer service representative. They’ll be able to receive pricing signals and control their utility usage via Internet portals, as well as shop among utilities for the best price and switch providers.

Expectations of system reliability are high today. Ten years ago, when the customer called to let you know their power was out, the call took 20 seconds; today, they expect you to already know that their power is out and be able to provide additional information about the nature and duration of that outage. What’s wrong? Are crews on the way? What’s the ETR? Can you text me when it’s back on? The call that includes these questions (and more) takes three times as long as that phone call 10 years ago. Thankfully, utility technology is coming of age just in time to meet the needs of evolving utility customers.

Many utilities already use automated circuit switchers to monitor lines for potential fault conditions and to react in real time to isolate faults and restore power. Automated metering systems send out “last gasp” outage notifications to outage management systems to predict the location of a problem for quicker restoration of service. Two-way communications systems send signals to smart appliances, system monitoring devices and customer messaging orbs to affect customer usage patterns. Fiber-to-the-home (FTTH) and wireless systems communicate meter usage in near real time to enable monitoring for abnormal consumption patterns. If customers have all of this data at their fingertips, what more will they expect from their utility service professionals? Advanced metering infrastructure (AMI) and two-way communications between customer and utility provider are essential to the future of these innovations. Figure 1 indicates the penetration of advanced metering by region.

A TOUCH OF ORWELL

This brave new world is not without risk. Tremendous amounts of data will be acquired and maintained. Monthly usage habits of consumers can provide incredible insight into customers’ lives – imagine the knowledge that real-time data can provide. As marketers begin to understand the powerful communications channels utilities possess, partnerships will emerge to maximize their value. Privacy laws and regulations defining proper use and misuse of data similar to Customer Private Network Information (CPNI) legislation will emerge just as they did in the telecommunications industry. Thus, it would be wise for the utility industry to take steps to limit use prior to legislative mandates being enacted that would create barriers to practical use.

EMERGING BUSINESSES CREATING VALUE FOR CUSTOMERS

Many of the technologies discussed in this paper already exist; the future will simply make their application more common – the interesting part will come in seeing how these products and services are bundled and who will provide them. Over the next 10 years, many new services (and a few new spins on old ones) will be offered to the consumer via this new infrastructure. The array of service offerings will be as broad as the capabilities that are created through the utilities infrastructure design. Utilities offering only one-way communication from the meter will be limited, while utilities with two-way communication riding their own fiber-optic systems will find a vast number of opportunities. Some of these services will fall within the core competency of the utility and be a natural fit in creating new revenue streams; others will require new partnerships to enable their existence. Some will span residential, commercial and industrial market segments, while others will be tailored to the residential customer only.

Energy management and consulting services will flourish during the initial period, especially in areas where time-of-use rates are incorporated in all market segments. Cable, Internet, telephone and security services will consolidate in areas where fiber-to-the-home is part of the infrastructure. Utilities’ ability to provide these services may be greatly effected by their legal and regulatory structures. Where limitations are imposed related to scope and type of services, partnerships will be formed to enable cost-effective service. Figure 2 shows what utilities reported to be the most common AMI system usages in a recent Federal Energy Regulatory Commission (FERC) survey.

As shown in Figure 2, load control, demand response monitoring and notification of price changes are already a part of the system capabilities. As an awareness of energy efficiency develops, a new focus on conservation will give rise to a newfound interest in smart appliances. Their operational characteristics will be more sophisticated than the predecessors of the “cycle and save” era, and they will meet customers’ demand for energy savings and environmental friendliness. This will not be limited to water heaters and heating, venting and air-conditioning (HVAC) units. The new initiatives will encompass refrigerators, freezers, washers, dryers and other second-order appliances, driving conservation derived from time-of-day use to a new level. And these initiatives will not be limited to electricity.

IMPACTS OF TECHNOLOGICAL CHANGE ON OTHER UTILITIES

Very few utility services will be exempt from the impact of changes in the electric industry. Natural gas and water usage, too, will be impacted as the nation focuses its attention on the efficient use of resources. Natural gas time-of-use rates will rise along with interruptible rates for residential consumers. This may take 10 to 15 years to occur, and a declining usage trend will need to be reversed; however, the same infrastructure restraints and concerns that plague the electric industry will be recognized in the natural gas industry as well. Thus, we can expect energy providers to adopt these rates in the future to stay competitive. If the electric systems are able to shift peak usage and levelize loads, the need for natural gas-fired generation will diminish. Natural gas-fired generation plants for system peaking would become unnecessary, and the decrease in demand would assist in stabilizing natural gas pricing.

Water availability issues are no longer limited to the Western United States, with areas such as Atlanta now beginning to experience water shortages as well. As a result, reverse-step rates that encourage water usage are being replaced with fixed and progressive step-rate structures to encourage water conservation. Automated metering can assist in eliminating waste, identifying excessive use during curtailment periods and creating a more efficient water distribution system. As energy time-of-use rates are implemented, water and wastewater treatment plants may find efficiencies in offering time-of-use rates as well in order to shape the usage characteristics of their customers without adding increased facilities. Even if this does not occur, time-of-use shifting of electrical load will have an impact on water usage patterns and effectively change water and wastewater operational characteristics.

In a world of increasing environmental vulnerability, the ability to monitor backflow in water metering will be essential in our efforts to be environmentally safe and monitor domestic threats to the water supply. Although technology’s ability to identify such threats will not prevent their occurrence, it will help utilities evaluate events and respond in order to isolate and diminish possible future threats.

IMPLICATIONS FOR UTILITIES

The above-described technological innovations don’t come without an impact to the service side of utilities. It will be difficult at best for utilities to modify legacy systems to take advantage of the benefits found in new technologies. More robust computer systems implemented in preparation for Y2K will be capable of some modifications; however, new software offerings are being designed today to address the vast opportunities that will soon exist. Processes for data management, storage and retrieval and use will need to be developed. And a new breed of customer service representative will begin to evolve. New technologies, near realtime information available to the consumer, unique customer and appliance configurations, and partnerships and services that go beyond the core competencies of the current workforce will create a short-term gap in trained customer service professionals. Billing departments will expand as rates become more complex. And the increased flexibility of customer information systems will require extensive checks and verifications to ensure accuracy.

Figure 3 (created by Robert Pratt of Pacific Northwest National Laboratory) provides a picture of the new landscape being created by the technologies utilities are implementing and the implications they have for customers.

Utilities with completely integrated systems will be the biggest winners in the future. Network management; geographic information systems; customer information systems; work order systems; supervisory control and data acquisition (SCADA) systems; and financial systems that communicate openly will be positioned to recognize the early wins that will spark the next decade of innovation. Cost-to-serve models continue to resonate as a popular topic among utility providers, and the impact of new technology will assist in making this integral to financial success.

The processes underlying current policies and procedures were designed for the way utilities traditionally operated – which is precisely why today’s utilities must take a systematic approach to re-evaluating their business processes if they’re to take advantage of new technology. They’ll even need to consider the cost of providing a detailed bill and mail delivery. The existence of real-time readings may bring dramatic changes in payment processing. Prepay accounts may eliminate the need to require deposits or assume risk for uncollectible accounts. Daily, weekly and semi-monthly payments may bring added cost (as may allowing customers to choose their due dates in the traditional arrears billing model); thus, utilities must consider the implications of these actions on cash fl ow and risk before implementing them. Advance notice of service interruption due to planned maintenance or construction can be communicated electronically over two-way automated meter reading (AMR) systems to orbs, communication panels, computers or other means. These same capabilities will dramatically change credit and collections efforts over the next 10 years. Electronic notification of past due accounts, shut-off and reconnection can all be done remotely at little cost to the utility.

IMPLICATIONS FOR CONSUMERS

Customers and commercial marketing efforts will be the driving forces for much of the innovation we’ll witness in coming years. No longer are customers simply comparing utilities against each other; today, they’re comparing utility customer service with their best and worst customer experiences regardless of industry. This means that customers are comparing a utility’s website capabilities with Amazon. com and its service response with the Ritz Carlton, Holiday Inn or Marriott they might frequent. Service reliability is measured against FedEx. Customer service expectations are raised with every initiative of competitive enterprise – a fact utilities will have to come to terms with if they’re to succeed.

All customers are not created equal. Technologically advanced customers will find the future exciting, while customers who view their utility as just another service provider will find it complicated and at times overwhelming. Utilities must communicate with customers at all levels to adequately prepare them for a future that’s already arrived.

Intelligent Communications Platform Provides Foundation for Clean Technology Solutions to Smart Grid

Since the wake-up call of the 2003 blackout in the northeastern United States and Canada, there’s been a steady push to improve the North American power grid. Legislation in both the United States and Canada has encouraged investments in technologies intended to make the grid intelligent and to solve critical energy issues. The Energy Policy Act (EPAct) of 2005 mandated that each state evaluate the business case for advanced metering infrastructure (AMI). In Ontario, the Energy Conservation Responsibility Act of 2006 mandated deployment of smart meters to all consumers by 2010. And the recent U.S. Energy Independence and Security Act of 2007 expands support from the U.S. government for investments in smart grid technologies while further emphasizing the need for the power industry to play a leadership role in addressing carbon dioxide emissions affecting climate change.

Recent state-level legislation and consumer sentiment suggest an increasing appetite for investments in distributed clean-technology energy solutions. Distributed generation technologies such as solar, wind and bio-diesel are becoming more readily available and have the potential to significantly improve grid operations and reliability.

THE NEXT STEP

Although the full vision for the smart grid is still somewhat undefined, most agree that an intelligent communications platform is a necessary foundation for developing and realizing this vision. Of the 10 elements that define the smart grid as contained within the Energy Act of 2007, more than half directly relate to or involve advanced capabilities for advanced communications.

A core business driver for intelligent communications is full deployment of smart metering, also referred to as advanced metering infrastructure. AMI involves automated measurement of time-of-use energy consumption – at either hourly or 15-minute intervals – and provides for new time-of-use rates that encourage consumers to use energy during off-peak hours when generation costs are low rather than peak periods when generation costs are high and the grid is under stress. With time-of-use rates, consumers may continue to use power during high peak periods but will pay a higher price to do so. AMI may also include remote service switch functionality that can reduce costs associated with site visits otherwise required to manage move-out/move-ins or to support prepayment programs.

Other smart grid capabilities that may be easily realized through the deployment of intelligent communications and AMI include improved outage management detection and restoration monitoring, revenue assurance and virtual metering of distribution assets.

CRITICAL ATTRIBUTES OF AMI SOLUTIONS

Modern communications network solutions leverage standards-based technology such as IEEE 802.15.4 to provide robust two-way wireless mesh network communications to intelligent devices. The intelligent communications platform should provide for remote firmware upgrades to connected intelligent devices and be capable of leveraging Internet protocol-based communications across multiple wide-area network (WAN) options (Figure 1).

Critical for maximizing the value of a communications infrastructure investment is support for broad interoperability and interconnectivity. Interoperability for AMI applications means supporting a range of options for metering devices. A communications platform system should be meter manufacturer-independent, empowering choice for utilities. This provides for current and future competitiveness for the meter itself, which is one of the more expensive elements of the smart metering solution.

Interconnectivity for communications platforms refers to the ability to support a broad range of functions, both end-point devices and systems at the head end. To support demand-side management and energy-efficiency initiatives, an intelligent communications platform should support programmable communicating thermostats (PCTs), in-home displays (IHDs) and load control switches.

The system may also support standards-based home-area networks (HANs) such as ZigBee and Zensys. Ultimately an intelligent communications platform should support a model whereby third-party manufacturers can develop solutions that operate on the network, providing competitive options for utilities.

For enterprise system interconnectivity, an AMI demand-side management or other smart grid head-end application should be developed using service-oriented architecture (SOA) principles and Web technologies. These applications should also support modern Web services-based solutions, providing published simple object access protocol (SOAP)-based APIs. This approach provides for easier integration with existing enterprise systems and simplifies the process of adding functionality (either through enhancements provided by the vendor or add-ons delivered by third parties or developed by the utility).

Finally, the value of an intelligent communications platform deployment is driven by the ability of other enterprise applications and processes to utilize the vast amount of new data received through the AMI , demand side management and smart grid applications. Core areas of extended value include integration with customer information systems and call center processes, and integration with outage management and work management systems. In addition, the intelligent communications platform makes utilities much better able to market new offerings to targeted customers based on their energy consumption profiles while also empowering consumers with new tools and access to information. The result: greater control over energy consumption costs and improved satisfaction.

INTEGRATION OF DISTRIBUTED GENERATION RESOURCES

Deployment and integration of distributed generation, including renewable resources, is an important supply-side element of the smart grid vision. This may include the installation of arrays of solar photovoltaic panels on home and office roofs, solar carports, small wind (3-5kvA) turbines, small biogas turbines and fuel cells.

By integrating these resources into a common communications platform, utilities have the opportunity to develop solutions that achieve much greater results than those provided simply by the sum of independent systems. For example, intelligent plug-in hybrid electric vehicles (PHEvs) connected to a smart solar carport may choose when to purchase power for charging the car or even to sell power back to the grid in a vehicle-to-grid (v2G) model based on dynamic price signals received through the communications platform. By maintaining intelligence at the edge of the grid, consumers and distributed resource owners can be empowered to manage to their own benefits and the grid as a whole.

SUMMARY

Now is the time to embark on realizing the smart grid vision. Global warming and system reliability issues are driving a sense of urgency. An intelligent communications platform provides a foundation capable of supporting multiple devices in multiple environments – commercial, industrial and residential – working seamlessly together in a single unified network.

All of the technical assets of a smart grid can be managed holistically rather than as isolated or poorly connected parts. The power of a network grows geometrically according to the amount of resources and assets actively connected to it. This is the future of the smart grid, and it’s available today.