Managing Communications Change

Change is being forced upon the utilities industry. Business drivers range from stakeholder pressure for greater efficiency to the changing technologies involved in operational energy networks. New technologies such as intelligent networks or smart grids, distribution automation or smart metering are being considered.

The communications network is becoming the key enabler for the evolution of reliable energy supply. However, few utilities today have a communications network that is robust enough to handle and support the exacting demands that energy delivery is now making.

It is this process of change – including the renewal of the communications network – that is vital for each utility’s future. But for the utility, this is a technological step change requiring different strategies and designs. It also requires new skills, all of which have been implemented in timescales that do not sit comfortably with traditional technology strategies.

The problems facing today’s utility include understanding the new technologies and assessing their capabilities and applications. In addition, the utility has to develop an appropriate strategy to migrate legacy technologies and integrate them with the new infrastructure in a seamless, efficient, safe and reliable manner.

This paper highlights the benefits utilities can realize by adopting a new approach to their customers’ needs and engaging a network partner that will take responsibility for the network upgrade, its renewal and evolution, and the service transition.

The Move to Smart Grids

The intent of smart grids is to provide better efficiency in the production, transport and delivery of energy. This is realized in two ways:

  • Better real-time control: ability to remotely monitor and measure energy flows more closely, and then manage those flows and the assets carrying them in real time.
  • Better predictive management: ability to monitor the condition of the different elements of the network, predict failure and direct maintenance. The focus is on being proactive to real needs prior to a potential incident, rather than being reactive to incidents, or performing maintenance on a repetitive basis whether it is needed or not.

These mechanisms imply more measurement points, remote monitoring and management capabilities than exist today. And this requires a greater reliance on reliable, robust, highly available communications than has ever been the case before.

The communications network must continue to support operational services independently of external events, such as power outages or public service provider failure, yet be economical and simple to maintain. Unfortunately, the majority of today’s utility communications implementations fall far short of these stringent requirements.

Changing Environment

The design template for the majority of today’s energy infrastructure was developed in the 1950s and 1960s – and the same is true of the associated communications networks.

Typically, these communications networks have evolved into a series of overlays, often of different technology types and generations (see Figure 1). For example, protection tends to use its own dedicated network. The physical realization varies widely, from tones over copper via dedicated time division multiplexing (TDM) connections to dedicated fiber connections. These generally use a mix of privately owned and leased services.

Supervisory control and data acquisitions systems (SCADA) generally still use modem technology at speeds between 300 baud to 9.6k baud. Again, the infrastructure is often copper or TDM running as one of many separate overlay networks.

Lastly, operational voice services (as opposed to business voice services) are frequently analog on yet another separate network.

Historically, there were good operational reasons for these overlays. But changes in device technology (for example, the evolution toward e-SCADA based on IP protocols), as well as the decreasing support by communications equipment vendors of legacy communications technologies, means that the strategy for these networks has to be reassessed. In addition, the increasing demand for further operational applications (for example, condition monitoring, or CCTV, both to support substation automation) requires a more up-to-date networking approach.

Tomorrow’s Network

With the exception of protection services, communications between network devices and the network control centers are evolving toward IP-based networks (see Figure 2). The benefits of this simplified infrastructure are significant and can be measured in terms of asset utilization, reduced capital and operational costs, ease of operation, and the flexibility to adapt to new applications. Consequently, utilities will find themselves forced to seriously consider the shift to a modern, homogeneous communications infrastructure to support their critical operational services.

Organizing For Change

As noted above, there are many cogent reasons to transform utility communications to a modern, robust communications infrastructure in support of operational safety, reliability and efficiency. However, some significant considerations should be addressed to achieve this transformation:

Network Strategy. It is almost inevitable that a new infrastructure will cross traditional operational and departmental boundaries within the utility. Each operational department will have its own priorities and requirements for such a network, and traditionally, each wants some, or total, control. However, to achieve real benefits, a greater degree of centralized strategy and management is required.

Architecture and Design. The new network will require careful engineering to ensure that it meets the performance-critical requirements of energy operations. It must maintain or enhance the safety and reliability of the energy network, as well as support the traffic requirements of other departments.

Planning, Execution and Migration. Planning and implementation of the core infrastructure is just the start of the process. Each service requires its own migration plan and has its own migration priorities. Each element requires specialist technical knowledge, and for preference, practical field experience.

Operation. Gone are the days when a communications failure was rectified by sending an engineer into the field to find the fault and to fix it. Maintaining network availability and robustness calls for sound operational processes and excellent diagnostics before any engineer or technician hits the road. The same level of robust centralized management tools and processes that support the energy networks have to be put in place to support communications network – no matter what technologies are used in the field.

Support. Although these technologies are well understood by the telecommunications industry, they are likely to be new to the energy utilities industry. This means that a solid support organization familiar with these technologies must be implemented. The evolution process requires an intense level of up-front skills and resources. Often these are not readily available in-house – certainly not in the volume required to make any network renewal or transformation effective. Building up this skill and resource base by recruitment will not necessarily yield staff that is aware of the peculiarities of the energy utilities market. As a result, there will be significant time lag from concept to execution, and considerable risk for the utility as it ventures alone into unknown territory.

Keys To Successful Engagement

Engaging a services partner does not mean ceding control through a rigid contract. Rather, it means crafting a flexible relationship that takes into consideration three factors: What is the desired outcome of the activity? What is the best balance of scope between partner assistance and in-house performance to achieve that outcome? How do you retain the flexibility to accommodate change while retaining control?

Desired outcome is probably the most critical element and must be well understood at the outset. For one utility, the desired outcome may be to rapidly enable the upgrade of the complete energy infrastructure without having to incur the upfront investment in a mass recruitment of the required new communications skills.

For other utilities, the desired outcome may be different. But if the outcomes include elements of time pressure, new skills and resources, and/or network transformation, then engaging a services partner should be seriously considered as one of the strategic options.

Second, not all activities have to be in scope. The objective of the exercise might be to supplement existing in-house capabilities with external expertise. Or, it might be to launch the activity while building up appropriate in-house resources in a measured fashion through the Build-Operate- Transfer (BOT) approach.

In looking for a suitable partner, the utility seeks to leverage not only the partner’s existing skills, but also its experience and lessons learned performing the same services for other utilities. Having a few bruises is not a bad thing – this means that the partner understands what is at stake and the range of potential pitfalls it may encounter.

Lastly, retaining flexibility and control is a function of the contract between the two parties which should be addressed in their earliest discussions. The idea is to put in place the necessary management framework and a robust change control mechanism based on a discussion between equals from both organizations. The utility will then find that it not only retains full control of the project without having to take day-to-day responsibility for its management, but also that it can respond to change drivers from a variety of sources – such as technology advances, business drivers, regulators and stakeholders.

Realizing the Benefits

Outsourcing or partnering the communications transformation will yield benefits, both tangible and intangible. It must be remembered that there is no standard “one-size-fits-all” outsourcing product. Thus, the benefits accrued will depend on the details of the engagement.

There are distinct tangible benefits that can be realized, including:

Skills and Resources. A unique benefit of outsourcing is that it eliminates the need to recruit skills not available internally. These are provided by the partner on an as-needed basis. The additional advantage for the utility is that it does not have to bear the fixed costs once they are no longer required.

Offset Risks. Because the partner is responsible for delivery, the utility is able to mitigate risk. For example, traditionally vendors are not motivated to do anything other than deliver boxes on time. But with a well-structured partnership, there is an incentive to ensure that the strategy and design are optimized to economically deliver the required services and ease of operation. Through an appropriate regime of business-related key performance indicators (KPIs), there is a strong financial incentive for the partner to operate and upgrade the network to maintain peak performance – something that does not exist when an in-house organization is used.

Economies of Scale. Outsourcing can bring the economies of scale resulting from synergies together with other parts of the partner’s business, such as contracts and internal projects.

There also are many other benefits associated with outsourcing that are not as immediately obvious and commercially quantifiable as those listed above, but can be equally valuable.

Some of these less tangible benefits include:

Fresh Point of View. Within most companies, employees often have a vested interest in maintaining the status quo. But a managed services organization has a vested interest in delivering the best possible service to the customer – a paradigm shift in attitude that enables dramatic improvements in performance and creativity.

Drive to Achieve Optimum Efficiency. Executives, freed from the day-to-day business of running the network, can focus on their core activities, concentrating on service excellence rather than complex technology decisions. To quote one customer, “From my perspective, a large amount of my time that might have in the past been dedicated to networking issues is now focused on more strategic initiatives concerned with running my business more effectively.”

Processes and Technologies Optimization. Optimizing processes and technologies to improve contract performance is part of the managed services package and can yield substantial savings.

Synergies with Existing Activities Create Economies of Scale. A utility and a managed services vendor have considerable overlap in the functions performed within their communications engineering, operations and maintenance activities. For example, a multi-skilled field force can install and maintain communications equipment belonging to a variety of customers. This not only provides cost savings from synergies with the equivalent customer activity, but also an improved fault response due to the higher density of deployed staff.

Access to Global Best Practices. An outsourcing contract relieves a utility of the time-consuming and difficult responsibility of keeping up to speed with the latest thinking and developments in technology. Alcatel-Lucent, for example, invests around 14 percent of its annual revenue into research and development; its customers don’t have to.

What Can Be Outsourced?

There is no one outsourcing solution that fits all utilities. The final scope of any project will be entirely dependent on a utility’s specific vision and current circumstances.

The following list briefly describes some of the functions and activities that are good possibilities for outsourcing:

Communications Strategy Consulting. Before making technology choices, the energy utility needs to define the operational strategy of the communications network. Too often communications is viewed as “plug and play,” which is hardly ever the case. A well-thought-out communications strategy will deliver this kind of seamless operation. But without that initial strategy, the utility risks repeating past mistakes and acquiring an ad-hoc network that will rapidly become a legacy infrastructure, which will, in turn, need replacing.

Design. Outsourcing allows utilities to evolve their communications infrastructure without upfront investment in incremental resources and skills. It can delegate responsibility for defining network architecture and the associated network support systems. A utility may elect to leave all technological decisions to the vendor and merely review progress and outcomes. Or, it may retain responsibility for technology strategy, and turn to the managed services vendor to turn the strategy into architecture and manage the subsequent design and project activities.

Build. Detailed planning of the network, the rollout project and the delivery of turnkey implementations all fall within the scope of the outsourcing process.

Operate, Administer and Maintain. Includes network operations and field and support services:

  • Network Operations. A vendor such as Alcatel-Lucent has the necessary experience in operating Network Operations Centers (NOCs), both on a BOT and ongoing basis. This includes handling all associated tasks such as performance and fault monitoring, and services management.
  • Network and Customer Field Services. Today, few energy utilities consider outside maintenance and provisioning activities to be a strategic part of their business and recognize they are prime candidates for outsourcing. Activities that can be outsourced include corrective and preventive maintenance, network and service provisioning, and spare parts management, return and repair – in other words, all the daily, time-consuming, but vitally important elements for running a reliable network.
  • Network Support Services. Behind the first-line activities of the NOC are a set of engineering support functions that assist with more complex faults – these are functions that cannot be automated and tend to duplicate those of the vendor’s. The integration and sharing of these functions enabled by outsourcing can significantly improve the utility’s efficiency.

Conclusion

Outsourcing can deliver significant benefits to a utility, both in terms of its ability to invest in and improve its operation and associated costs. However, each utility has its own unique circumstances, specific immediate needs, and vision of where it is going. Therefore, each technical and operational solution is different.

SmartGridNet Architecture for Utilities

With the accelerating movement toward distributed generation and the rapid shift in energy consumption patterns, today’s power utilities are facing growing requirements for improved management, capacity planning, control, security and administration of their infrastructure and services.

UTILITY NETWORK BUSINESS DRIVERS

These requirements are driving a need for greater automation and control throughout the power infrastructure, from generation through the customer site. In addition, utilities are interested in providing end-customers with new applications, such as advanced metering infrastructure (AMI), online usage reports and outage status. In addition to meeting these requirements, utilities are under pressure to reduce costs and automate operations, as well as protect their infrastructures from service disruption in compliance with homeland security requirements.

To succeed, utilities must seamlessly support these demands with an embedded infrastructure of traditional devices and technologies. This will allow them to provide a smooth evolution to next-generation capabilities, manage life cycle issues for aging equipment and devices, maintain service continuity, minimize capital investment, and ensure scalability and future-proofing for new applications, such as smart metering.

By adopting an evolutionary approach to an intelligent communications network (SmartGridNet), utilities can maximize their ability to leverage the existing asset base and minimize capital and operations expenses.

THE NEED FOR AN INTELLIGENT UTILITY NETWORK

As a first step toward implementing a SmartGridNet, utilities must implement intelligent electronic devices (IEDs) throughout the infrastructure – from generation and transmission through distribution directly to customer premises – if they are to effectively monitor and manage facilities, load and usage. A sophisticated operational communications network then interconnects such devices through control centers, providing support for supervisory control and data acquisition (SCADA), teleprotection, remote meter reading, and operational voice and video. This network also enables new applications such as field personnel management and dispatch, safety and localization. In addition, the utility’s corporate communications network increases employee productivity and improves customer service by providing multimedia; voice, video, and data communications; worker mobility; and contact center capabilities.

These two network types – operational and corporate – and the applications they support may leverage common network facilities; however, they have very different requirements for availability, service assurance, bandwidth, security and performance.

SMARTGRIDNET REQUIREMENTS

Network technology is critical to the evolution of the next-generation utility. The SmartGridNet must support the following key requirements:

  • Virtualization. Enables operation of multiple virtual networks over common infrastructure and facilities while maintaining mutual isolation and distinct levels of service.
  • Quality of service (QoS). Allows priority treatment of critical traffic on a “per-network, per-service, per-user basis.”
  • High availability. Ensures constant availability of critical communications, transparent restoration and “always on” service – even when the public switched telephony network (PSTN) or local power supply suffers outages.
  • Multipoint-to-multipoint communications. Provides integrated control and data collection across multiple sensors and regulators via synchronized, redundant control centers for disaster recovery.
  • Two-way communications. Supports increasingly sophisticated interactions between control centers and end-customers or field forces to enable new capabilities, such as customer sellback, return or credit allocation for locally stored power; improved field service dispatch; information sharing; and reporting.
  • Mobile services. Improves employee efficiency, both within company facilities and in the field.
  • Security. Protects the infrastructure from malicious and inadvertent compromise from both internal and external sources, ensures service reliability and continuity, and complies with critical security regulations such as North American Electric Reliability Corp. (NERC).
  • Legacy service integration. Accommodates the continued presence of legacy remote terminal units (RTUs), meters, sensors and regulators, supporting circuit, X.25, frame relay (FR), and asynchronous transfer mode (ATM) interfaces and communications.
  • Future-proofing. Capability and scalability to meet not just today’s applications, but tomorrow’s, as driven by regulatory requirements (such as smart metering) and new revenue opportunities, such as utility delivery of business and residential telecommunications (U-Telco) services.

SMARTGRIDNET EVOLUTION

A number of network technologies – both wire-line and wireless – work together to achieve these requirements in a SmartGridNet. Utilities must leverage a range of network integration disciplines to engineer a smooth transformation of their existing infrastructure to a SmartGridNet.

The remainder of this paper describes an evolutionary scenario, in which:

  • Next-generation synchronous optical network (SONET)-based multiservice provisioning platforms (MSPPs), with native QoS-enabled Ethernet capabilities are seamlessly introduced at the transport layer to switch traffic from both embedded sensors and next-generation IEDs.
  • Cost-effective wave division multiplexing (WDM) is used to increase communications network capacity for new traffic while leveraging embedded fiber assets.
  • Multiprotocol label switching (MPLS)/ IP routing infrastructure is introduced as an overlay on the transport layer only for traffic requiring higher-layer services that cannot be addressed more efficiently by the transport layer MSPPs.
  • Circuit emulation over IP virtual private networks (VPNs) is supported as a means for carrying sensor traffic over shared or leased network facilities.
  • A variety of communications applications are delivered over this integrated infrastructure to enhance operational efficiency, reliability, employee productivity and customer satisfaction.
  • A toolbox of access technologies is appropriately applied, per specific area characteristics and requirements, to extend power service monitoring and management all the way to the end-customer’s premises.
  • A smart home network offers new capabilities to the end-customer, such as Advanced Metering Infrastructure (AMI), appliance control and flexible billing models.
  • Managed and assured availability, security, performance and regulatory compliance of the communications network.

THE SMARTGRIDNET ARCHITECTURE

Figure 1 provides an architectural framework that we may use to illustrate and map the relevant communications technologies and protocols.

The backbone network in Figure 1 interconnects corporate sites and data centers, control centers, generation facilities, transmission and distribution substations, and other core facilities. It can isolate the distinct operational and corporate communications networks and subnetworks while enforcing the critical network requirements outlined in the section above.

The underlying transport network for this intelligent backbone is made up of both fiber and wireless (for example, microwave) technologies. The backbone also employs ring and mesh architectures to provide high availability and rapid restoration.

INTELLIGENT CORE TRANSPORT

As alluring as pure packet networks may be, synchronous SONET remains a key technology for operational backbones. Only SONET can support the range of new and legacy traffic types while meeting the stringent absolute delay, differential delay and 50-millisecond restoration requirements of real-time traffic.

SONET transport for legacy traffic may be provided in MSPPs, which interoperate with embedded SONET elements to implement ring and mesh protection over fiber facilities and time division multiplexing (TDM)-based microwave. Full-featured Ethernet switch modules in these MSPPs enable next-generation traffic via Ethernet over SONET (EOS) and/or packet over SONET (POS). Appropriate, cost-effective wave division multiplexing (WDM) solutions – for example, coarse, passive and dense WDM – may also be applied to guarantee sufficient capacity while leveraging existing fiber assets.

BACKBONE SWITCHING/ROUTING

From a switching and routing perspective, a significant amount of traffic in the backbone may be managed at the transport layer – for example, via QoS-enabled Ethernet switching capabilities embedded in the SONET-based MSPPs. This is a key capability for supporting expedited delivery of critical traffic types, enabling utilities to migrate to more generic object-oriented substation event (GOOSE)-based inter-substation communications for SCADA and teleprotection in the future in accordance with standards such as IEC 61850.

Where higher-layer services – for example, IP VPN, multicast, ATM and FR – are required, however, utilities can introduce a multi-service switching/routing infrastructure incrementally on top of the transport infrastructure. The switching infrastructure is based on multi-protocol label switching (MPLS), implementing Layer 2 transport encapsulation and/or IP VPNs, per the relevant Internet engineering task force (IETF) requests for comments (RFCs).

This type of unified infrastructure reduces operations costs by sharing switching and restoration capabilities across multiple services. Current IP/MPLS switching technology is consistent with the network requirements summarized above for service traffic requiring higher-layer services, and may be combined with additional advanced services such as Layer 3 VPNs and unified threat management (UTM) devices/firewalls for further protection and isolation of traffic.

CORE COMMUNICATIONS APPLICATIONS

Operational services such as tele-protection and SCADA represent key categories of applications driving the requirements for a robust, secure, cost-effective network as described. Beyond these, there are a number of communications applications enabling improved operational efficiency for the utility, as well as mechanisms to enhance employee productivity and customer service. These include, but are not limited to:

  • Active network controls. Improves capacity and utilization of the electricity network.
  • Voice over IP (VoIP). Leverages common network infrastructure to reduce the cost of operational and corporate voice communications – for example, eliminating costly channel banks for individual lines required at remote substations.
  • Closed circuit TV (CCTV)/Video Over IP. Improves surveillance of remote assets and secure automated facilities.
  • Multimedia collaboration. Combines voice, video and data traffic in a rich application suite to enhance communication and worker productivity, giving employees direct access to centralized expertise and online resources (for example, standards and diagrams).
  • IED interconnection. Better measures and manages the electricity networks.
  • Mobility. Leverages in-plant and field worker mobility – via cellular, land mobile radio (LMR) and WiFi – to improve efficiency of key work processes.
  • Contact center. Employs next-generation communications and best-in-class customer service business processes to improve customer satisfaction.

DISTRIBUTION AND ACCESS NETWORKS

The intelligent utility distribution and access networks are subtending networks from the backbone, accommodating traffic between backbone switches/applications and devices in the distribution infrastructure all the way to the customer premises. IEDs on customer premises include automated meters and device regulators to detect and manage customer power usage.

These new devices are primarily packet-based. They may, therefore, be best supported by packet-based access network technologies. However, for select rings, TDM may also be chosen, as warranted. The packet-based access network technology chosen depends on the specifics of the sites to be connected and the economics associated with that area (for example, right of way, customer densities and embedded infrastructure).

Regardless of the access and last-mile network designs, traffic ultimately arrives at the network via an IP/MPLS edge switch/router with connectivity to the backbone IP/MPLS infrastructure. This switching/routing infrastructure ensures connectivity among the intelligent edge devices, core capabilities and control applications.

THE SMART HOME NETWORK

A futuristic home can support many remotely controlled and managed appliances centered on lifestyle improvements of security, entertainment, health and comfort (see Figure 2). In such a home, applications like smart meters and appliance control could be provided by application service providers (ASPs) (such as smart meter operators or utilities), using a home service manager and appropriate service gateways. This architecture differentiates between the access provider – that is, the utility/U-Telco or other public carrier – and the multiple ASPs who may provide applications to a home via the access provider.

FLEXIBLE CHARGING

By employing smart meters and developing the ability to retrieve electricity usage data at regular intervals – potentially several readings per hour – retailers could make billing a significant competitive differentiator. detailed usage information has already enabled value-added billing in the telecommunications world, and AMI can do likewise for billing electricity services. In time, electricity users will come to expect the same degree of flexible charging with their electricity bill that they already experience with their telephone bills, including, for example, prepaid and post-paid options, tariff in function of time, automated billing for house rental (vacation), family or group tariffs, budget tariffs and messaging.

MANAGING THE COMMUNICATIONS NETWORK

For utilities to leverage the communications network described above to meet business key requirements, they must intelligently manage that network’s facilities and services. This includes:

  • Configuration management. Provisioning services to ensure that underlying switching/routing and transport requirements are met.
  • Fault and performance management. Monitoring, correlating and isolating fault and performance data so that proactive, preventative and reactive corrective actions can be initiated.
  • Maintenance management. Planning of maintenance activities, including material management and logistics, and geographic information management.
  • Restoration management. Creating trouble tickets, dispatching and managing the workforce, and carrying out associated tracking and reporting.
  • Security management. Assuring the security of the infrastructure, managing access to authorized users, responding to security events, and identifying and remediating vulnerabilities per key security requirements such as NERC.

Utilities can integrate these capabilities into their existing network management infrastructures, or they can fully or partially outsource them to managed network service providers.

Figure 3 shows how key technologies are mapped to the architectural framework described previously. Being able to evolve into an intelligent utilities network in a cost-effective manner requires trusted support throughout planning, design, deployment, operations and maintenance.

CONCLUSION

Utilities can evolve their existing infrastructures to meet key SmartGridnet requirements by effectively leveraging a range of technologies and approaches. Through careful planning, designing, engineering and application of this technology, such firms may achieve the business objectives of SmartGridnet while protecting their current investments in infrastructure. Ultimately, by taking an evolutionary approach to SmartGridnet, utilities can maximize their ability to leverage the existing asset base as well as minimize capital and operations expenses.