Real-Time Automation Solutions for Operation of Energy Assets and Markets

Areva T&D offers solutions to bring electricity from the source to end-users, building high- and medium-voltage substations and develops technologies to manage power grids and energy markets worldwide. It is a full-fl edged solution provider, offering safe, reliable, efficient power distribution down to the lowest level end-user consumption. Its software applications cover all the strategic operational business processes of an energy utility, including optimization of transmission and distribution grid operation; management of wholesale and retail market operations; and energy transaction solutions involving strategic business processes from energy trading, energy scheduling and dispatch management to demand-side management and settlements.

As long as advanced monitoring and control infrastructures have been used for grid management, Areva T&D has been at the forefront of innovation. Its strategy has always been to supply the most accurate real-time vision of the network infrastructure. This has led to several major breakthroughs, including Areva’s latest e-terraVision™ product.

The e-terraVision technology provides control rooms with higher level decision support capabilities through visualization tools, “smart applications” and simulation – thus improving situation awareness. This operator-friendly system enables power dispatchers to fully visualize their networks with the right level of situation awareness and proactively operate the grid by taking the necessary real-time corrective actions.

Expertise acquired in the high-voltage network enables Areva to supply distribution monitoring and control applications as well, and these have greatly influenced its distribution management strategy. As a result of early successes, the company developed an adapted eterra product offer for distribution customers.

Areva T&D continues to integrate unique new concepts to meet market trends and innovation. For example, Areva T&D SmartGrid solutions are designed to supply the following benefits.

  1. Alignment with deregulation trends in the consumer electricity market, including:
    • Making the process of changing energy supplier easier;
    • Providing better service quality for energy usage, including accurate and appropriate billing of actual consumed energy;
    • For specific countries where nontechnical losses are significant, allowing accurate audits to be conducted; and
    • Allowing for differentiated energy offerings with greater pricing flexibility and integration of renewable energy offers.
  2. Support for further structural benefits discussed and validated as part of international working groups on SmartGrid initiatives:
    • Better selectivity of the IEDs in medium- and low-voltage leads to reduce the number of customers affected by outages, thus improving service quality and reducing maintenance costs.
    • Careful monitoring of low-voltage grids, including consumption by phase and distribution cell – which is especially relevant in terms of renewable energy generation.
    • Online asset monitoring, which enables predictive maintenance, thus increasing assets’ life span.
    • Dynamic security management of primary and secondary networks. Introducing renewable energy sources into the distribution network poses a challenge. Combined infrastructures for monitoring systems for distribution and metering will be needed in the near future.

All these challenges have driven the definition and development of Areva SmartGrid solutions. The company’s enhanced supervision and control center products, including smart metering, supply all the advantages of automation technologies to distribution networks.

Achieving Decentralized Coordination In the Electric Power Industry

For the past century, the dominant business and regulatory paradigms in the electric power industry have been centralized economic and physical control. The ideas presented here and in my forthcoming book, Deregulation, Innovation, and Market Liberalization: Electricity Restructuring in a Constantly Evolving Environment (Routledge, 2008), comprise a different paradigm – decentralized economic and physical coordination – which will be achieved through contracts, transactions, price signals and integrated intertemporal wholesale and retail markets. Digital communication technologies – which are becoming ever more pervasive and affordable – are what make this decentralized coordination possible. In contrast to the “distributed control” concept often invoked by power systems engineers (in which distributed technology is used to enhance centralized control of a system), “decentralized coordination” represents a paradigm in which distributed agents themselves control part of the system, and in aggregate, their actions produce order: emergent order. [1]

Dynamic retail pricing, retail product differentiation and complementary end-use technologies provide the foundation for achieving decentralized coordination in the electric power industry. They bring timely information to consumers and enable them to participate in retail market processes; they also enable retailers to discover and satisfy the heterogeneous preferences of consumers, all of whom have private knowledge that’s unavailable to firms and regulators in the absence of such market processes. Institutions that facilitate this discovery through dynamic pricing and technology are crucial for achieving decentralized coordination. Thus, retail restructuring that allows dynamic pricing and product differentiation, doesn’t stifle the adoption of digital technology and reduces retail entry barriers is necessary if this value-creating decentralized coordination is to happen.

This paper presents a case study – the “GridWise Olympic Peninsula Testbed Demonstration Project” – that illustrates how digital end-use technology and dynamic pricing combine to provide value to residential customers while increasing network reliability and reducing required infrastructure investments through decentralized coordination. The availability (and increasing cost-effectiveness) of digital technologies enabling consumers to monitor and control their energy use and to see transparent price signals has made existing retail rate regulation obsolete. Instead, the policy recommendation that this analysis implies is that regulators should reduce entry barriers in retail markets and allow for dynamic pricing and product differentiation, which are the keys to achieving decentralized coordination.

THE KEYS: DYNAMIC PRICING, DIGITAL TECHNOLOGY

Dynamic pricing provides price signals that reflect variations in the actual costs and benefits of providing electricity at different times of the day. Some of the more sophisticated forms of dynamic pricing harness the dramatic improvements in information technology of the past 20 years to communicate these price signals to consumers. These same technological developments also give consumers a tool for managing their energy use, in either manual or automated form. Currently, with almost all U.S. consumers (even industrial and commercial ones) paying average prices, there’s little incentive for consumers to manage their consumption and shift it away from peak hours. This inelastic demand leads to more capital investment in power plants and transmission and distribution facilities than would occur if consumers could make choices based on their preferences and in the face of dynamic pricing.

Retail price regulation stifles the economic processes that lead to both static and dynamic efficiency. Keeping retail prices fixed truncates the information flow between wholesale and retail markets, and leads to inefficiency, price spikes and price volatility. Fixed retail rates for electric power service mean that the prices individual consumers pay bear little or no relation to the marginal cost of providing power in any given hour. Moreover, because retail prices don’t fluctuate, consumers are given no incentive to change their consumption as the marginal cost of producing electricity changes. This severing of incentives leads to inefficient energy consumption in the short run and also causes inappropriate investment in generation, transmission and distribution capacity in the long run. It has also stifled the implementation of technologies that enable customers to make active consumption decisions, even though communication technologies have become ubiquitous, affordable and user-friendly.

Dynamic pricing can include time-of-use (TOU) rates, which are different prices in blocks over a day (based on expected wholesale prices), or real-time pricing (RTP) in which actual market prices are transmitted to consumers, generally in increments of an hour or less. A TOU rate typically applies predetermined prices to specific time periods by day and by season. RTP differs from TOU mainly because RTP exposes consumers to unexpected variations (positive and negative) due to demand conditions, weather and other factors. In a sense, fixed retail rates and RTP are the end points of a continuum of how much price variability the consumer sees, and different types of TOU systems are points on that continuum. Thus, RTP is but one example of dynamic pricing. Both RTP and TOU provide better price signals to customers than current regulated average prices do. They also enable companies to sell, and customers to purchase, electric power service as a differentiated product.

TECHNOLOGY’S ROLE IN RETAIL CHOICE

Digital technologies are becoming increasingly available to reduce the cost of sending prices to people and their devices. The 2007 Galvin Electricity Initiative report “The Path to Perfect Power: New Technologies Advance Consumer Control” catalogs a variety of end-user technologies (from price-responsive appliances to wireless home automation systems) that can communicate electricity price signals to consumers, retain data on their consumption and be programmed to respond automatically to trigger prices that the consumer chooses based on his or her preferences. [2] Moreover, the two-way communication advanced metering infrastructure (AMI) that enables a retailer and consumer to have that data transparency is also proliferating (albeit slowly) and declining in price.

Dynamic pricing and the digital technology that enables communication of price information are symbiotic. Dynamic pricing in the absence of enabling technology is meaningless. Likewise, technology without economic signals to respond to is extremely limited in its ability to coordinate buyers and sellers in a way that optimizes network quality and resource use. [3] The combination of dynamic pricing and enabling technology changes the value proposition for the consumer from “I flip the switch, and the light comes on” to a more diverse and consumer-focused set of value-added services.

These diverse value-added services empower consumers and enable them to control their electricity choices with more granularity and precision than the environment in which they think solely of the total amount of electricity they consume. Digital metering and end-user devices also decrease transaction costs between buyers and sellers, lowering barriers to exchange and to the formation of particular markets and products.

Whether they take the form of building control systems that enable the consumer to see the amount of power used by each function performed in a building or appliances that can be programmed to behave differently based on changes in the retail price of electricity, these products and services provide customers with an opportunity to make better choices with more precision than ever before. In aggregate, these choices lead to better capacity utilization and better fuel resource utilization, and provide incentives for innovation to meet customers’ needs and capture their imaginations. In this sense, technological innovation and dynamic retail electricity pricing are at the heart of decentralized coordination in the electric power network.

EVIDENCE

Led by the Pacific Northwest National Laboratory (PNNL), the Olympic Peninsula GridWise Testbed Project served as a demonstration project to test a residential network with highly distributed intelligence and market-based dynamic pricing. [4] Washington’s Olympic Peninsula is an area of great scenic beauty, with population centers concentrated on the northern edge. The peninsula’s electricity distribution network is connected to the rest of the network through a single distribution substation. While the peninsula is experiencing economic growth and associated growth in electricity demand, the natural beauty of the area and other environmental concerns served as an impetus for area residents to explore options beyond simply building generation capacity on the peninsula or adding transmission capacity.

Thus, this project tested how the combination of enabling technologies and market-based dynamic pricing affected utilization of existing capacity, deferral of capital investment and the ability of distributed demand-side and supply-side resources to create system reliability. Two questions were of primary interest:

1) What dynamic pricing contracts do consumers find attractive, and how does enabling technology affect that choice?

2) To what extent will consumers choose to automate energy use decisions?

The project – which ran from April 2006 through March 2007 – included 130 broadband-enabled households with electric heating. Each household received a programmable communicating thermostat (PCT) with a visual user interface that allowed the consumer to program the thermostat for the home – specifically to respond to price signals, if desired. Households also received water heaters equipped with a GridFriendly appliance (GFA) controller chip developed at PNNL that enables the water heater to receive price signals and be programmed to respond automatically to those price signals. Consumers could control the sensitivity of the water heater through the PCT settings.

These households also participated in a market field experiment involving dynamic pricing. While they continued to purchase energy from their local utility at a fixed, discounted price, they also received a cash account with a predetermined balance, which was replenished quarterly. The energy use decisions they made would determine their overall bill, which was deducted from their cash account, and they were able to keep any difference as profit. The worst a household could do was a zero balance, so they were no worse off than if they had not participated in the experiment. At any time customers could log in to a secure website to see their current balances and determine the effectiveness of their energy use strategies.

On signing up for the project, the households received extensive information and education about the technologies available to them and the kinds of energy use strategies facilitated by these technologies. They were then asked to choose a retail pricing contract from three options: a fixed price contract (with an embedded price risk premium), a TOU contract with a variable critical peak price (CPP) component that could be called in periods of tight capacity or an RTP contract that would reflect a wholesale market-clearing price in five-minute intervals. The RTP was determined using a uniform price double auction in which buyers (households and commercial) submit bids and sellers submit offers simultaneously. This project represented the first instance in which a double auction retail market design was tested in electric power.

The households ranked the contracts and were then divided fairly evenly among the three types, along with a control group that received the enabling technologies and had their energy use monitored but did not participate in the dynamic pricing market experiment. All households received either their first or second choice; interestingly, more than two-thirds of the households ranked RTP as their first choice. This result counters the received wisdom that residential customers want only reliable service at low, stable prices.

According to the 2007 report on the project by D.J. Hammerstrom (and others), on average participants saved 10 percent on their electricity bills. [5] That report also includes the following findings about the project:

Result 1. For the RTP group, peak consumption decreased by 15 to 17 percent relative to what the peak would have been in the absence of the dynamic pricing – even though their overall energy consumption increased by approximately 4 percent. This flattening of the load duration curve indicates shifting some peak demand to nonpeak hours. Such shifting increases the system’s load factor, improving capacity utilization and reducing the need to invest in additional capacity, for a given level of demand. A 15 to 17 percent reduction is substantial and is similar in magnitude to the reductions seen in other dynamic pricing pilots.

After controlling for price response, weather effects and weekend days, the RTP group’s overall energy consumption was 4 percent higher than that of the fixed price group. This result, in combination with the load duration effect noted above, indicates that the overall effect of RTP dynamic pricing is to smooth consumption over time, not decrease it.

Result 2. The TOU group achieved both a large price elasticity of demand (-0.17), based on hourly data, and an overall energy reduction of approximately 20 percent relative to the fixed price group.

After controlling for price response, weather effects and weekend days, the TOU group’s overall energy consumption was 20 percent lower than that of the fixed price group. This result indicates that the TOU (with occasional critical peaks) pricing induced overall conservation – a result consistent with the results of the California SPP project. The estimated price elasticity of demand in the TOU group was -0.17, which is high relative to that observed in other projects. This elasticity suggests that the pricing coupled with the enabling end-use technology amplifies the price responsiveness of even small residential consumers.

Despite these results, dynamic pricing and enabling technologies are proliferating slowly in the electricity industry. Proliferation requires a combination of formal and informal institutional change to overcome a variety of barriers. And while formal institutional change (primarily in the form of federal legislation) is reducing some of these barriers, it remains an incremental process. The traditional rate structure, fixed by state regulation and slow to change, presents a substantial barrier. Predetermined load profiles inhibit market-based pricing by ignoring individual customer variation and the information that customers can communicate through choices in response to price signals. Furthermore, the persistence of standard offer service at a discounted rate (that is, a rate that does not reflect the financial cost of insurance against price risk) stifles any incentive customers might have to pursue other pricing options.

The most significant – yet also most intangible and difficult-to-overcome – obstacle to dynamic pricing and enabling technologies is inertia. All of the primary stakeholders in the industry – utilities, regulators and customers – harbor status quo bias. Incumbent utilities face incentives to maintain the regulated status quo as much as possible (given the economic, technological and demographic changes surrounding them) – and thus far, they’ve been successful in using the political process to achieve this objective.

Customer inertia also runs deep because consumers have not had to think about their consumption of electricity or the price they pay for it – a bias consumer advocates generally reinforce by arguing that low, stable prices for highly reliable power are an entitlement. Regulators and customers value the stability and predictability that have arisen from this vertically integrated, historically supply-oriented and reliability-focused environment; however, what is unseen and unaccounted for is the opportunity cost of such predictability – the foregone value creation in innovative services, empowerment of customers to manage their own energy use and use of double-sided markets to enhance market efficiency and network reliability. Compare this unseen potential with the value creation in telecommunications, where even young adults can understand and adapt to cell phone-pricing plans and benefit from the stream of innovations in the industry.

CONCLUSION

The potential for a highly distributed, decentralized network of devices automated to respond to price signals creates new policy and research questions. Do individuals automate sending prices to devices? If so, do they adjust settings, and how? Does the combination of price effects and innovation increase total surplus, including consumer surplus? In aggregate, do these distributed actions create emergent order in the form of system reliability?

Answering these questions requires thinking about the diffuse and private nature of the knowledge embedded in the network, and the extent to which such a network becomes a complex adaptive system. Technology helps determine whether decentralized coordination and emergent order are possible; the dramatic transformation of digital technology in the past few decades has decreased transaction costs and increased the extent of feasible decentralized coordination in this industry. Institutions – which structure and shape the contexts in which such processes occur – provide a means for creating this coordination. And finally, regulatory institutions affect whether or not this coordination can occur.

For this reason, effective regulation should focus not on allocation but rather on decentralized coordination and how to bring it about. This in turn means a focus on market processes, which are adaptive institutions that evolve along with technological change. Regulatory institutions should also be adaptive, and policymakers should view regulatory policy as work in progress so that the institutions can adapt to unknown and changing conditions and enable decentralized coordination.

ENDNOTES

1. Order can take many forms in a complex system like electricity – for example, keeping the lights on (short-term reliability), achieving economic efficiency, optimizing transmission congestion, longer-term resource adequacy and so on.

2. Roger W. Gale, Jean-Louis Poirier, Lynne Kiesling and David Bodde, “The Path to Perfect Power: New Technologies Advance Consumer Control,” Galvin Electricity Initiative report (2007). www.galvinpower.org/resources/galvin.php?id=88

3. The exception to this claim is the TOU contract, where the rate structure is known in advance. However, even on such a simple dynamic pricing contract, devices that allow customers to see their consumption and expenditure in real time instead of waiting for their bill can change behavior.

4. D.J. Hammerstrom et. al, “Pacific Northwest GridWise Testbed Demonstration Projects, volume I: The Olympic Peninsula Project” (2007). http://gridwise.pnl.gov/docs/op_project_final_report_pnnl17167.pdf

5. Ibid.

Leveraging the Data Deluge: Integrated Intelligent Utility Network

If you define a machine as a series of interconnected parts serving a unified purpose, the electric power grid is arguably the world’s largest machine. The next-generation version of the electric power grid – called the intelligent utility network (IUN), the smart grid or the intelligent grid, depending on your nationality or information source – provides utilities with enhanced transparency into grid operations.

Considering the geographic and logical scale of the electric grid from any one utility’s point of view, a tremendous amount of data will be generated by the additional “sensing” of the workings of the grid provided by the IUN. This output is often described as a “data flood,” and the implication that businesses could drown in it is apropos. For that reason, utility business managers and engineers need analytical tools to keep their heads above water and obtain insight from all this data. Paraphrasing the psychologist Abraham Maslow, the “hierarchy of needs” for applying analytics to make sense of this data flood could be represented as follows (Figure 1).

  • Insight represents decisions made based on analytics calculated using new sensor data integrated with existing sensor or quasi-static data.
  • Knowledge means understanding what the data means in the context of other information.
  • Information means understanding precisely what the data measures.
  • Data represents the essential reading of a parameter – often a physical parameter.

In order to reap the benefits of accessing the higher levels of this hierarchy, utilities must apply the correct analytics to the relevant data. One essential element is integrating the new IUN data with other data over the various time dimensions. Indeed, it is analytics that allow utilities to truly benefit from the enhanced capabilities of the IUN compared to the traditional electric power grid. Analytics can be comprised solely of calculations (such as measuring reactive power), or they can be rule-based (such as rating a transform as “stressed” if it has a more than 120 percent nameplate rating over a two-hour period).

The data to be analyzed comes from multiple sources. Utilities have for years had supervisory control and data acquisition (SCADA) systems in place that employ technologies to transmit voltage, current, watts, volt ampere reactives (VARs) and phase angle via leased telephone lines at 9,600 baud, using the distributed network protocol (DNP3). Utilities still need to integrate this basic information from these systems.

In addition, modern electrical power equipment often comes with embedded microprocessors capable of generating useful non-operational information. This can include switch closing time, transformer oil chemistry and arc durations. These pieces of equipment – generically called intelligent electrical devices (IEDs) – often have local high-speed sequences of event recorders that can be programmed to deliver even more data for a report for post-event analysis.

An increasing number of utilities are beginning to see the business cases for implementing an advanced metering infrastructure (AMI). A large-scale deployment of such meters would also function as a fine-grained edge sensor system for the distribution network, providing not only consumption but voltage, power quality and load phase angle information. In addition, an AMI can be a strategic platform for initiating a program of demand-response load control. Indeed, some innovative utilities are considering two-way AMI meters to include a wireless connection such as Zigbee to the consumer’s home automation network (HAN), providing even finer detail to load usage and potential controllability.

Companies must find ways to analyze all this data, both from explicit sources such as IEDs and implicit sources such as AMI or geographical information systems (GIS). A crucial aspect of IUN analysis is the ability to integrate conventional database data with time-synchronized data, since an isolated analytic may be less useful than no analytic data at all.

CATEGORIES AND RELATIONSHIPS

There are many different categories of analytics that address the specific needs of the electric power utility in dealing with the data deluge presented by the IUN. Some depend on the state regulatory environment, which not only imposes operational constraints on utilities but also determines the scope and effect of what analytics information exchange is required. For example, a generation-to-distribution utility – what some fossil plant owners call “fire to wire” – may have system-wide analytics that link in load dispatch to generation economics, transmission line realities and distribution customer load profiles. Other utilities operate power lines only, and may not have their own generation capabilities or interact with consumers at all. Utilities like these may choose to focus initially on distribution analytics such as outage predication and fault location.

Even the term analytics can have different meanings for different people. To the power system engineer it involves phase angles, voltage support from capacitor banks and equations that take the form “a + j*b.” To the line-of-business manager, integrated analytics may include customer revenue assurance, lifetime stress analysis of expensive transformers and dashboard analytics driving business process models. Customer service executives could use analytics to derive emergency load control measures based on a definition of fairness that could become quite complex. But perhaps the best general definition of analytics comes from the Six Sigma process mantra of “define, measure, analyze, improve, control.” In the computer-driven IUN, this would involve:

  • Define. This involves sensor selection and location.
  • Measure. SCADA systems enable this process.
  • Analyze. This can be achieved using IUN Analytics.
  • Improve. This involves grid performance optimization, as well as business process enhancements.
  • Control. This is achieved by sending commands back to grid devices via SCADA, and by business process monitoring.

The term optimization can also be interpreted in several ways. Utilities can attempt to optimize key performance indicators (KPIs) such as the system average interruption duration index (SAIDI, which is somewhat consumer-oriented) on grid efficiency in terms of megawatts lost to component heating, business processes (such as minimizing outage time to repair) or meeting energy demand with minimum incremental fuel cost.

Although optimization issues often cross departmental boundaries, utilities may make compromises for the sake of achieving an overall strategic goal that can seem elusive or even run counter to individual financial incentives. An important part of higher-level optimization – in a business sense rather than a mathematical one – is the need for a utility to document its enterprise functions using true business process modeling tools. These are essential to finding better application integration strategies. That way, the business can monitor the advisories from analytics in the tool itself, and more easily identify business process changes suggested by patterns of online analytics.

Another aspect of IUN analytics involves – using a favorite television news phrase – “connecting the dots.” This means ensuring that a utility actually realizes the impact of a series of events on an end state, even though the individual events may appear unrelated.

For example, take complex event processing (CEP). A “simple” event might involve a credit card company’s software verifying that your credit card balance is under the limit before sending an authorization to the merchant. A “complex” event would take place if a transaction request for a given credit card account was made at a store in Boston, and another request an hour later in Chicago. After taking in account certain realities of time and distance, the software would take an action other than approval – such as instructing the merchant to verify the cardholder’s identity.

Back in the utilities world, consideration of weather forecasts in demand-response action planning, or distribution circuit redundancy in the face of certain existing faults, can be handled by such software. The key in developing these analytics is not so much about establishing valid mathematical relationships as it is about giving a businessperson the capability to create and define rules. These rules must be formulated within an integrated set of systems that support cross-functional information. Ultimately, it is the businessperson who relates the analytics back to business processes.

AVAILABLE TOOLS

Time can be a critical variable in successfully using analytics. In some cases, utilities require analytics to be responsive to the electric power grid’s need to input, calculate and output in an actionable time frame.

Utilities often have analytics built into functions in their distribution management or energy management systems, as well as individual analytic applications, both commercial and home-grown. And some utilities are still making certain decisions by importing data into a spreadsheet and using a self-developed algorithm. No matter what the source, the architecture of the analytics system should provide a non-real-time “bus,” often a service-oriented architecture (SOA) or Web services interface, but also a more time-dependent data bus that supports common industry tools used for desktop analytics within the power industry.

It’s important that everyone in the utility has internally published standards for interconnecting their analytics to the buses, so all authorized stakeholders can access it. Utilities should also set enterprise policy for special connectors, manual entry and duplication of data, otherwise known as SOA governance.

The easier it is for utilities to use the IUN data, the less likely it is that their engineering, operations and maintenance staffs will be overwhelmed by the task of actually acquiring the data. Although the term “plug and play” has taken on certain negative connotations – largely due to the fact that few plug-and-play devices actually do that – the principle of easily adding a tool is still both valid and valuable. New instances of IUN can even include Web 2.0 characteristics for the purpose of mash-ups – easily configurable software modules that link, without pain, via Web services.

THE GOAL OF IMPLEMENTING ANALYTICS

Utilities benefit from applying analytics by making the best use of integrated utility enterprise information and data models, and unlocking employee ideas or hypotheses about ways to improve operations. Often, analytics are also useful in helping employees identify suspicious relationships between data. The widely lamented “aging workforce” issue typically involves the loss of senior staff who can visualize relationships that aren’t formally captured, and who were able to make connections that others didn’t see. Higher-level analytics can partly offset the impact of the aging workforce brain drain.

Another type of analytics is commonly called “business intelligence.” But although a number of best-selling general-purpose BI tools are commercially available, utilities need to ensure that the tools have access to the correct, unique, authoritative data. Upon first installing BI software, there’s sometimes a tendency among new users to quickly assemble a highly visual dashboard – without regard to the integrity of the data they’re importing into the tool.

Utilities should also create enterprise data models and data dictionaries to ensure the accuracy of the information being disseminated throughout the organization. After all, utilities frequently use analytics to create reports that summarize data at a high level. Yet some fault detection schemes – such as identifying problems in buried cables – may need original, detailed source data. For that reason utilities must have an enterprise data governance scheme in place.

In newer systems, data dictionaries and models can be provided by a Web service. But even if the dictionary consists of an intermediate lookup table in a relational database, the principles still hold: Every process and calculated variable must have a non-ambiguous name, a cross-reference to other major systems (such as a distribution management system [DMS] or geographic information system [GIS]), a pointer to the data source and the name of the person who owns the data. It is critical for utilities to assign responsibility for data accuracy, validation, source and caveats at the beginning of the analytics engineering process. Finding data faults after they contribute to less-than-correct results from the analytics is of little use. Utilities may find data scrubbing and cross-validation tools from the IT industry to be useful where massive amounts of data are involved.

Utilities have traditionally used simulation primarily as a planning tool. However, with the continued application of Moore’s law, the ability to feed a power system simulation with real-time data and solve a state estimation in real time can result in an affordable crystal ball for predicting problems, finding anomalies or performing emergency problem solving.

THE IMPORTANCE OF STANDARDS

The emergence of industry-wide standards is making analytics easier to deploy across utility companies. Standards also help ease the path to integration. After all, most electrons look the same around the world, and the standards arising from the efforts of Kirchoff, Tesla and Maxwell have been broadly adopted globally. (Contrary views from the quantum mechanics community will not be discussed here!) Indeed, having a documented, self-describing data model is important for any utility hoping to make enterprise-wide use of data for analytics; using an industry-standard data model makes the analytics more easily shareable. In an age of greater grid interconnection, more mergers and acquisitions, and staff shortages, utilities’ ability to reuse and share analytics and create tools on top of standards-based data models has become increasingly important.

Standards are also important when interfacing to existing utility systems. Although the IUN may be new, data on existing grid apparatus and layout may be decades old. By combining the newly added grid observations with the existing static system information to form a complete integration scenario, utilities can leverage analytics much more effectively.

When deploying an IUN, there can be a tendency to use just the newer, sensor-derived data to make decisions, because one knows where it is and how to access it. But using standardized data models makes incorporating existing data less of an issue. There is nothing wrong with creating new data models for older data.

CONCLUSION

To understand the importance of analytics in relation to the IUN, imagine an ice-cream model (pick your favorite flavor). At the lowest level we have data: the ice cream is 30 degrees. At the next level we have information: you know that it is 30 degrees on the surface of the ice cream, and that it will start melting at 32 degrees. At the next level we have knowledge: you’re measuring the temperature of the middle scoop of a three-scoop cone, and therefore when it melts, the entire structure will collapse. At the insight level we bring in other knowledge – such as that the ambient air temperature is 80 degrees, and that the surface temperature of the ice cream has been rising 0.5 degrees per minute since you purchased it. Then the gastronomic analytics activate and take preemptive action, causing you to eat the whole cone in one bite, because the temporary frozen-teeth phenomenon is less of a business risk than having the scoops melt and fault to ground.