Lighting the Way

Persistent climate change concerns, volatile energy prices and a growing awareness of technological advancement in energy are leading consumers across the globe to reconsider their role in the electric power value chain. Likewise, substantial increases in utility infrastructure investment are likely due to global demands for climate change mitigation; the need to support aging networks and generation plants; and proliferation of government stimulus plans for weakened economies.

For energy and utility companies, this presents an historic opportunity to encourage new, mutually beneficial behaviors and create business models to meet new consumer demands.

Our last report, "Plugging in the Consumer: Innovating Utility Business Models for the Future," explored the radically changing relationship between energy providers and consumers who took part in a survey conducted in late 2007. Even during the global economic downturn, progress has continued along the two dimensions shaping these changes: technology advancement and consumers’ desire for more control. Ultimately, this will result in movement of the basis of the industry to a participatory network – an interconnected environment characterized by a wide variety of grid and network technologies that enable shared responsibility and benefits. It will drive the creation of entirely new markets and products.

To continue our research about consumer expectations, we launched a followup survey in the fall of 2008. We surveyed over 5,000 customers from an expanded group of countries. This included the "core group" from our prior survey – the U.S., the U.K., Germany, the Netherlands, Australia and Japan – plus Canada, Denmark, Belgium, France, Ireland and New Zealand. Our survey findings strongly suggest the historical view of customers as "like-minded" is already outdated in most places.

Encouraging New Behaviors

In our surveys over the past two years, many consumers demonstrated at least one goal associated with asserting more control over their energy usage. The features of a participatory network appeal tremendously to them, because it would offer abundant service options and information to manage energy usage according to specific goals, such as cost reduction or environmental impact.

There is not much evidence that consumers think lower rates are coming. Over half see the cost increasing at roughly the same pace as usage. Forty percent see their bills increasing more rapidly than their usage (or not decreasing as much as any reduction in usage). Six percent think their bills will increase more slowly (or decrease more rapidly) than their usage. Overall, this year’s respondents have a slightly more pessimistic view of the next five years than those last year.

Cost remains the powerful motivator behind a desire for control over energy usage and a willingness to change behavior. Four in five consumers are willing to change the time-of-day in which they perform energy-consuming housework in exchange for cost savings of 50 percent or more. With the prevalent feeling that prices will move inexorably upward and awareness of smart meters growing, over 90 percent of respondents indicated that they would like a smart meter or other tools to manage their usage, with 55 percent to 60 percent of these respondents willing to pay a one-time or monthly fee for that capability.

Consumers’ emphasis on climate change and the availability of renewable energy programs in response to this demand for more carbon-neutral products remained about the same year to year. Across the core group countries, the percentage reporting that they did not have renewable power programs available dropped to 16 percent from 21 percent in the new survey (see Figure 1). Rather than changing their answers to the affirmative, however, most of the movement was to "don’t know" (up to 50 percent from 46 percent).

According to industry experts in some of the countries surveyed, the high level of "don’t know" responses, in part, reflects doubts in some countries about the veracity of green power claims. Still, if to a larger extent many customers truly cannot answer that question, this could indicate a valuable opportunity lost to ineffective communication with customers in countries with significant renewable resources and high participation levels.

In addition to environmental concerns, the global economic downturn of 2008 is clearly having severe impact on consumers. Across the core group countries, the number of consumers paying a premium for green products and services is down 20 percent to 30 percent (see Figure 2).

This change in spending patterns also seems to influence perceptions of green power options among consumers from core group countries that do not have (or are unsure if they have) green power options. The percentage of people who say they want green power options is down slightly, falling to 78 percent in 2008 from 85 percent in 2007. But, during that one-year period, the percentage of those willing to pay an additional 20 percent or more monthly dropped by nearly two-thirds, to just 6 percent from 16 percent.

The percentage of those who have green power options and actually buy them remained about the same, however. This is not surprising given contractual commitments, significantly higher prices for nonrenewable fuels in the past year (which eliminated some of the cost differential between standard and green power), and the overall commitment to the environment expected of "green" consumers.

Analyzing Consumers

In "Plugging in the Consumer," we described an emerging segmentation comprised of four consumer types: passive ratepayers (PR), frugal goal-seekers (FGs), energy epicures (EE) and energy stalwarts (ES) (see Figure 3). Our latest survey results reinforce these segments as likely outcomes of current trends. Two main attributes are associated with variances in consumers’ behavior profiles:

  • Personal Initiative. A consumer’s willingness to make decisions and take action based on specific goals such as cost control, reliability, convenience and climate change impact.
  • Disposable Income. A consumer’s financial wherewithal to support energy-related goals. In early adoption phases, only those with sufficient resources will be able to implement new technologies and buy more expensive products.

We also found that other demographic characteristics – such as age and country of residence – affect the speed of technology adoption, ability to leverage control "behind the meter," goals embedded in accepting more responsibility for energy choices, among others.

Consumer Profiles

PRs that embody a passive preference for the status quo remain the most prevalent of any of the four consumer archetypes. However, we see a remarkable transition in progress. In the past, these typically uninvolved, acquiescent customers comprised virtually 100 percent of the customer base. They represent just 31 percent of our 2008 survey respondents.

The number of more engaged and goal-oriented customers all along the income spectrum is approaching one-half of the total customer base. Frugal goal-seekers (FGs), about 22 percent of the survey population, have limited resources but strong will to change the way they use energy and manage its consumption. This group desires low-cost control of energy choices. Energy stalwarts (ES) have enough strength in both will and wallet to proactively take measures from making simple efficiency improvements to generating their own electricity. They have a clear willingness to invest in energy choices and represent about one in five consumers surveyed. Both of these groups will strongly influence the other half of consumers as they succeed in meeting their goals.

The remaining respondents (26 percent) are the EEs, who are curious but not committed. While they actually demonstrate more knowledge about their provider and options than any other group, they do not share the cost concerns or clear desire for information and control. This appears to be a matter of choice and not ignorance. While passive in some ways, this group is open to experimentation, particularly when the cost and lifestyle impact of a behavioral change are low.

Generational Change

In the short term, changes in customer needs will occur based on personal initiative and income. In the long run, even more radical changes may emerge as the millennial generation continues to move into adulthood and the energy customer base. By varying definitions, the first wave of these information-hungry, technology-savvy consumers is somewhere in our 25- to 34-year-old demographic grouping and fully encompasses the 18- to 24-year-old age group.

Precisely at this juncture, we see major changes in the survey results related to the ways consumers learn about companies and products, what they value and what they will pay for, as well as how they communicate with each other and the companies with which they do business. This, ultimately, may give way to new customer segments that will influence the shape of the industry in ways unimagined just a decade or two ago. To effectively determine the best strategy for a customer-focused transition to the participatory network of the future, every provider of energy or related services will need to construct an inventory of existing customer interactions with a wide variety of current and future service and product models.

In the following sections, we outline how specific consumer segments view the technology and business advances associated with key interactions.

Learning about Providers

Important messages from providers do not always reach consumers, as evidenced by consumers’ lack of awareness of available green power options (see Figure 1).

Additionally, only one in six consumers foresees a decrease in usage over the next five years, and only about a third say their provider can help them save energy despite strong efforts by the industry and governments to promote efficiency. In particular, provider messages are not reaching the youngest consumers. For example, those aged 18 to 34 are 40 percent more likely to not know if they have a choice in providers versus those 35 and older. The under-34 group also is twice as likely to not even know their provider’s name.

While all age groups will continue to rely heavily on their providers for information about energy (85 percent to 90 percent of respondents indicated this was a likely source), reliance on other sources differed starkly. Those over 55 are more than 10 times more likely to look to government for energy information than to social networks and other Web 2.0 content. Current trends also imply that those under 25 are becoming almost as likely to use the latter, rather than the former. To reach all generations, companies need to understand how different consumers tend to educate themselves about providers and their offerings with the wide variety of media available.

Controlling Costs

Not surprisingly, those aged 18 to 34 were most eager for the types of "self-service" and automated energy management that smart metering and smart grids will bring. What may be surprising, however, is that this age group – and particularly those under 25 – is the most willing to pay a stated premium for these services of approximately $100 U.S. as a one-time fee, or a monthly fee of $5 U.S. (see Figure 4).

Having a message sent to a mobile device when power is out at the consumer’s home also garnered significantly higher interest from the under-25 age group. About 30 percent were more likely than the other age groups to pay $1 per month for such a service. This finding may be related to the generally higher willingness we observed of younger age groups to subscribe to these programs, to their higher rate of ownership of mobile data devices and plans, or a combination of the two.

Investing in the Consumer

Substantial new increases in investment in utility infrastructure will come with a great deal of public, regulatory and shareholder scrutiny. All of these stakeholders will want to know how the public as a whole can benefit.

Energy and utility companies will need a strategy for aligning customer wants and needs with technology deployment roadmaps, beginning with rigorous customer segmentation and building an inventory of customer interactions. This must be followed by a program to analyze the interactions that are anticipated with each consumer segment and to assess whether existing capabilities are sufficient to leverage the new infrastructure in ways that support the new customer experience:

  • Identifying customer wants and needs specific to the interactions that will be most important to each particular segment;
  • Identifying the interactions that can be most effectively enhanced through participatory network deployment strategies;
  • Defining new or augmented business capabilities and regulatory models that must be developed to translate technological capabilities into customer benefits;
  • Determining which capabilities, if any, will be ceded to other providers for further development;
  • Integrating the development of specific new business capabilities into the participatory network deployment roadmap; and
  • Communicating these new capabilities clearly and effectively to all stakeholders.

The outcome of this process will lead to critical decisions about the customer-facing business capabilities on which the enterprise will focus.

Existing organizational strengths and new capabilities to be developed – one by one or in combinations – will form the basis for a broad menu of new products and services that the energy provider can offer. Each energy or service provider must be prepared to analyze its customer base to determine specific wants and needs before assessing how customers want to see new products and services emerge. After preferences are evaluated, they need to be applied to the customer interaction inventory in a way that identifies what should to be enhanced through technological improvements, regulatory change or improvements to communication channels.

This needs to be an ongoing process; customer assessment will not cease to be important once the participatory network is in place. The good news is that the data required to perform this continual assessment will be ubiquitous and arrive in real time from multiple sources of value-generating insights. But with this capability comes a challenge: finding new and powerful ways to collect, assimilate and evaluate this torrent of data in a way that will lead to inspiration for new programs and products that appeals to an expanding number of involved consumers.

Business Process Improvement

In the past, the utility industry could consider itself exempt from market drivers like those listed above. However, today’s utilities are immersed in a sea of change. Customers demand reliable power in unlimited supply, generated in environmentally friendly ways without increased cost. All the while regulators are telling consumers to “change the way they are using energy or be ready to pay more,” and the Department of Energy is calling for utilities to make significant reductions in usage by 2020 [1].

“The consumer’s concept of quality will no longer be measured by only the physical attributes of the product – it will extend to the process of how the product is made, including product safety, environmental compliance and social responsibility compliance.”

– Victor Fang, chairman of Li and Fang,
in the 2008 IBM CEO Study

If these issues are not enough, couple them with a loss of knowledge and skill due to an aging workforce, an ever-increasing amount of automation and technology being introduced into our infrastructure with few standards, tightening bond markets and economic declines requiring us to do more with less. Now more than ever the industry needs to redefine our core competencies, identify key customers and their requirements, and define processes that meet or exceed their expectations. Business process improvement is essential to ensure future success for utilities.

There is no need to reinvent the wheel and develop a model for utilities to address business process improvement. One already exists that offers the most holistic approach to process improvement today. It is not new, but like any successful management method, it has been modified and refined to meet continuously changing business needs.

It is agnostic in the way it addresses methods used for analysis and process improvement such as Lean, Six Sigma and other tools; but serves as a framework for achieving results in any industry. It is the Baldrige Criteria for Performance Excellence (see Figure 1).

The Criteria for Performance Excellence is designed to assist organizations to focus on strategy-driven performance while addressing key decisions driving both short-term and long-term organizational sustainability in a dynamic environment. Is it possible that this framework was designed for times such as these in the utility industry?

The criteria are essentially simple in design. They are broken into seven categories as shown in figure 2; leadership, strategic planning, customer focus, measurement, analysis and knowledge management, workforce focus, process management and results.

In this model, measurement, analysis and knowledge management establish the foundation. There are two triads. On the left hand side, leadership, strategic planning and customer focus make up the leadership triad. On the right hand side of the model, workforce focus, process management and results make up the results triad. The alignment and integration of these essential elements of business create a framework for continuous improvement. This model should appear familiar in concept to industry leaders; there is not a single utility in the industry that does not identify with these categories in some form.

The criteria are built to elicit a response through the use of how and what questions that ask about key processes and their deployment throughout the organization. On face value, these questions appear to be simple. However, as you respond to them, you will realize their linkage and begin to identify opportunities for improvement that are essential to future success. Leaders wishing to begin this effort should not be surprised by the depth of the questions and the relatively few members within your organization who will be able to provide complete answers.

In assessment of the model’s ability to meet utility industry needs, let’s discuss each category in greater detail, provide relevance to the utility industry and include key questions for you to consider as you begin to assess your own organization’s performance.

Leadership: Who could argue that the current demand for leadership in utilities is more critical today than ever before in our history? Changes in energy markets are bringing with them increased levels of accountability, a greater focus on regulatory, legal and ethical requirements, a need for long-term viability and sustainability, and increased expectations of community support. Today’s leaders are expected to achieve ever increasing levels of operational performance while operating on less margin than ever before.

“The leadership category examines how senior leaders’ personal actions guide and sustain the organization. Also examined are the organization’s governance system and how it fulfills legal, ethical and societal responsibilities as well as how it selects and supports key communities [2].”

Strategic Planning: Does your utility have a strategic plan? Not a dust-laden document sitting on a bookshelf or a financial budget; but a plan that identifies strategic objectives and action plans to address short and long-term goals. Our current business environment demands that we identify our core competencies (and more importantly what are not our core competencies), identify strategic challenges to organizational success, recognize strategic advantages and develop plans that ensure our efforts are focused on objectives that will ensure achievement of our mission and vision.

What elements of our business should we outsource? Do our objectives utilize our competitive advantages and core competencies to diminish organizational challenges? We all know the challenges that are both here today and await us just beyond the horizon. Many of them are common to all utilities; an aging workforce, decreased access to capital, technological change and regulatory change. How are we addressing them today and is our approach systematic and proactive or are we simply reacting to the challenges as they arise?

“The strategic planning category examines how your organization develops strategic objectives and action plans. Also examined are how your chosen strategic objectives and action plans are deployed and changed if circumstances require, and how progress is measured [2].”

Customer Focus: The success of the utility industry has been due in part to a long-term positive relationship with its customers. Most utilities have made a conscientious effort to identify and address the needs of the customer; however a new breed of customer is emerging with greater expectations, a higher degree of sensitivity to environmental issues, a diminished sense of loyalty to business organizations and overall suspicion of ethical and legal compliance.

Their preferred means of communication are quite different than the generations of loyal customers you have enjoyed in the past. They judge your performance against similar customer experiences received from organizations far beyond the traditional competitor.

You now compete against Wal-Mart’s supply chain process, Amazon.com’s payment processes and their favorite hotel chain’s loyalty rewards process. You are being weighed in the balances and in many cases found to be lacking. Worse yet, you may not have even recognized them as an emerging customer segment.

“The Customer Focus category examines how your organization engages its customers for long-term marketplace success and builds a customer-focused culture. Also examined is how your organization listens to the voice of its customers and uses this information to improve and identify opportunities for innovation [2].”

Measurement, Analysis, and Knowledge Management: The data created and maintained by GIS, CIS, AMI, SCADA and other systems create a wealth of information that can be analyzed to obtain knowledge sufficient to make rapid business decisions. However, many of these systems are incapable of or at the very least difficult to integrate with one another, leaving leaders with a lot of data but no meaningful measures of key performance. Even worse, a lack of standards related to system performance leaves many utilities that develop performance measures with a limited number of inconsistently measured comparatives from their peers.

If utilities are going to overcome the challenges of the future, it is essential that they integrate all data systems for improved accessibility and develop standards that would facilitate meaningful comparative measures. This is not to say that comparative measures do not exist, they do. However, increasing the number of utilities participating would increase our understanding of best practices and enable us to determine best-in-class performance.

“The measurement, analysis and knowledge management category examines how the organization selects, gathers, analyzes, manages and improves its data, information and knowledge assets and how it manages its information technology. The category also examines how your organization reviews and uses reviews to improve its performance [2].”

Workforce Focus: We have already addressed the aging workforce and its impact on the future of utilities. Companion challenges related to the utility workforce include the heavy benefits burdens that many utilities currently bear. Also, the industry faces a diminished interest in labor positions and the need to establish new training methods to engage a variety of generations within our workforce and ensure knowledge acquisition and retention.

The new workforce brings with it new requirements for satisfaction and engagement. The new employee has proven to be less loyal to the organization and studies show they will have many more employers before they retire than that of their predecessors. It is essential that we develop ways to identify these requirements and take action to retain these individuals or we risk increased training cost and operational issues as they seek new employment opportunities.

“The workforce focus category examines how your organization engages, manages and develops the workforce to utilize its full potential in alignment with organizational mission, strategy and action plans. The category examines the ability to assess workforce capability and capacity needs and to build a workforce environment conducive to high performance [2].”

Process Management: It is not unusual for utilities to implement new software with dramatically increased capabilities and ask the integrator to make it align with their current processes or continue to use their current processes without regard for the system’s new capabilities. Identifying and mapping key work processes can enable incredible opportunities for streamlining your organization and facilitate increased utilization of technology.

What are your utilities’ key work processes and how do you determine them and their relationship to creating customer value? These are difficult for leaders to articulate; but yet, without a clear understanding of key work processes and their alignment to core competencies and strategic advantages as well as challenges, it may be that your organization is misapplying efforts related to core competencies and either outsourcing something best maintained internally or performing effort that is better delivered by outsource providers.

“The process management category examines how your organization designs its work systems and how it designs, manages and improves its key processes for implementing these work systems to deliver customer value and achieve organizational success and sustainability. Also examined is your readiness for emergencies [2].”

Results: Results are the fruit of your efforts, the gift that the Baldrige Criteria enables you to receive from your applied efforts. All of us want positive results. Many utilities cite positive performance in measures that are easy to acquire: financial performance, safety performance, customer satisfaction. But which of these measures are key to our success and sustainability as an organization? As you answer the questions and align measures that are integral to obtaining your organization’s mission and vision, it will become abundantly clear which measures you’ll need to maintain and develop competitive comparisons and benchmarks.

“The results category examines the organization’s performance and improvement in all key areas – product outcomes, customer-focused outcomes, financial and market outcomes, workforce-focused outcomes, process-effectiveness outcomes and leadership outcomes. Performance levels are examined relative to those of competitors and other organizations with similar product offerings [2].”

A Challenge

The adoption of the Baldrige criteria is often described as a journey. Few utilities have embraced this model. However, it appears to offer a comprehensive solution to the challenges we face today. Utilities have a rich history and play a positive role in our nation. A period of rapid change is upon us. We need to shift from reacting to leading as we solve the problems that face our industry. By applying this model for effective process improvement, we can once again create a world where utilities lead the future.

References

  1. Quote from U.S. Treasury Secretary Tim Geithner as communicated in SmartGrid Newsletter
  2. Malcolm Baldrige National Quality Award, “Path to Excellence and Some path Building Tools.” www.nist.gov/baldrige.

Enabling Successful Business Outcomes Through Value-Based Client Relationships

Utilities are facing a host of challenges ranging from environmental concerns, aging infrastructure and systems, to Smart Grid technology and related program decisions. The future utility will be required to find effective solutions to these challenges, while continuing to meet the increasing expectations of newly empowered consumers. Cost management in addressing these challenges is important, but delivery of value is what truly balances efficiency with customer satisfaction.

Our Commitment

Vertex clients trust us to deliver on our promises and commitments, and they partner with us to generate new ideas that will secure their competitive advantage, while also delivering stakeholder benefits. Our innovative same-side-of-the-table approach allows us to transform the efficiency and effectiveness of your business operations, enabling you to lower your risk profile and enhance your reputation in the eyes of customers, investors and regulatory bodies. Working as partners, we provide unique insights that will generate actionable ideas and help you achieve new levels of operational excellence.

With a long heritage in the utility industry, Vertex possesses an in-depth knowledge and understanding of the issues and challenges facing utility businesses today. We actively develop insights and innovative ideas that allow us to work with our utility clients to transform their businesses, and we can enhance your future performance in terms of greater efficiencies, higher customer satisfaction, increased revenue and improved profitability.

Achievement of desired business outcomes is best achieved with a strategic, structured approach that leverages continuous improvement throughout. Vertex takes a four-level approach, which starts with asking the right questions. Levels 1 and 2 identify business challenges and the corresponding outcomes your utility hopes to achieve. Need to improve customer satisfaction? If so, is moving from the 2nd to 1st quartile the right target? Pinpointing the key business challenges that are limiting or impeding your success is critical. These may include a need to reduce bad debt, reduce costs, minimize billing errors, or improve CSR productivity. Whatever challenges you face, collaboration with our experts will ensure your utility is on the right track to meet or exceed your targets.

Once the challenges and outcomes have been identified and validated, Vertex partners with clients to develop effective solutions. The solutions implemented in Level 3 consist of unique value propositions that, when combined effectively, achieve the desired business outcome for the business challenge being addressed. Vertex’s proprietary “Value Creation Model” enables us to develop and implement solutions that provide measurable business results and ongoing quality assurance.

Inherent to the success of this model is the Vertex Transition Methodology, which has resulted in 200 successful transitions over a twelve-year period. Due diligence yields a clear understanding of how the business operates. Mobilizing activities lay the foundation for the transition, and a baseline for the transition plan is established. The plans developed during the planning stage are implemented, followed by a stabilization period from the business transfer to when things are fully operational.

Another key element of this model lies in Vertex’s transformation capabilities, and what we refer to as our “6D” transformation methodology. Dream, Define, Design, Develop, Deliver, Drive – our Lean Six Sigma methods guarantee successful deployment of continuous process improvement results. In addition to Lean Six Sigma, the Vertex Transformation Methodology includes change management, people and performance management, and project management.

In Level 4 of the Vertex solution approach, Vertex measures the effectiveness of a solution by determining if it achieved the desired business outcome. We utilize a Balanced Scorecard approach to ensure that the business outcome positively impacts all of the key elements of a client’s business: Customer, Employee, Operational, and Financial. As desired business outcomes evolve, Vertex will remain committed to adapting our solutions in partnership with our clients to meet these changing needs.

Transforming Your Organization

If you’re ready to transform to an outcomes- based business, Vertex has the capability to help. Our service lines include: Consulting and Transformation, IT Applications Services and Products, Debt Management, and Meter-to-Cash Outsourcing.

Our transformation approach blends innovation and business process improvement, focusing on achieving your strategic objectives via our proven expertise and insights. We bring business transformation that secures greater efficiencies, improved effectiveness and enhanced services for your organization. All the while we never forget that our employees represent your brand.

We’ll work collaboratively with you, rapidly implementing services and delivering on continuous improvement to meet your goals. We’ll build on your business needs, sharing ideas and jointly developing options for change – working together to deliver real value.

Empower Your Customers To Reduce Energy Demand

The Energy Information Administration (EIA) forecasts a continuing gap between total domestic energy production and consumption through 2030. This delta will not be closed by supply alone; customer behavior changes are needed to reduce total consumption and peak load. Electric and gas utilities face tremendous challenges meeting energy supply and demand needs and will play a pivotal role in determining practical solutions. With the right approach, utilities will deliver on the promise of energy efficiency and demand response.

Energy market projections are highly speculative as the market is characterized by high price volatility and rapid market transformation. Adding to the uncertainty is the voluntary nature of demand response and energy efficiency programs, and the critical importance of customer behavior change. Utilities are spending billions of dollars, making program penetration essential – and customer education paramount. At an end-point cost of up to $300, a five percent penetration is not the answer. Vertex can help mitigate these risks through highly effective management of customer care, CIS integration, pilot programs, and analytics. Vertex’s core “meter-to-cash” capabilities have undergone a major revolution in response to the new world of AMI, energy efficiency, and demand response. A robust set of new services will allow utilities to transform how they do business.

Smart meters put new demands on CIS platforms and traditional business processes – innovative rates, distributed generation, demand response and new customer programs all require creative change. Vertex is currently helping utilities develop and manage customer programs to fully exploit smart meter deployments and provide customer care to customers migrating to time-based rates. We deliver customer management services to drive penetration and designed to meet the unique customer care needs generated by smart meter installations, energy efficiency and demand response programs to empower customers to manage their energy use and reduce consumption, and cost-effective customer care and billing solutions to support smart meters.

Water utilities are not immune to the need for conservation. In the past 30 years, the U.S. population has grown over 50% while the total water use has tripled. On average, Americans use approximately 75 to 80 gallons of water per person per day. Vertex can help water utilities address the unique conservation challenges they face, including customer care and program support, MDMS solutions to organize data for forecasting, code enforcement, business and customer insight, and other services.

Case Study – Hydro One

Hydro One is an Ontario, Canada based utility that is one of the five largest transmission utilities in North America. As the stewards of critical provincial assets, Hydro One works with its industry partners to ensure that electricity can be delivered safely, reliably, and affordably to its customers. Vertex has been providing Meter-to-Cash outsourcing services to Hydro One since 2002.

Applying the Vertex 4-level solutions approach enabled desired business outcomes:

Level 1: Identify Business Challenges

In 2006 Hydro One approached Vertex and indicated that one of their corporate goals was to dramatically improve customer satisfaction as a result of the Hydro One customer satisfaction survey. At that point, Hydro One customer satisfaction scores on agent-handled calls had hovered in the 75-76% range for several years. Up to that time, the relationship with Vertex had focused on significant reductions to cost with no erosion to service offered to customers. Now, Hydro One was looking to Vertex to help lead the drive to improve the customer experience.

Level 2: Identify Desired Outcomes

In 2007 Vertex and Hydro One entered into collaborative discussions to evaluate and analyze the historical customer satisfaction scores, and to work jointly to develop a plan to radically modify the customer experience and improve customer satisfaction. Those discussions led down several paths, and the parties mutually agreed to target the following areas for change:

  • The Vertex/Hydro One Quality program
  • A cultural adjustment that would reflect the change in focus
  • Technology that could help support Hydro One’s goals
  • End-to-end process review

Level 3: Develop & Implement Solution

Vertex has worked closely with Hydro One to help them deliver on their goal of significant improvements to customer satisfaction. Changes were applied to process, call scripts, quality measures and performance scoring at all levels in the organization, including incentive compensation and recognition programs.

Level 4: Measure Solution Results

  • Customer satisfaction scores on agent-handled calls increased from 76% in 2006 to 86% in 2008
  • Quality monitoring program changes yielded a 10% increase in first-call resolution
  • Introduced bi-weekly Process/Quality forums
  • Monthly reviews with the client to reinforce success and progress toward targets

Measuring Smart Metering’s Progress

Smart or advanced electricity metering, using a fixed network communications path, has been with us since pioneering installations in the US Midwest in the mid-1980s. That’s 25 years ago, during which time we have seen incredible advancements in information and communication technologies.

Remember the technologies of 1985? The very first mobile phones were just being introduced. They weighed as much as a watermelon and cost nearly $9,000 in today’s dollars. SAP had just opened its first sales office outside of Germany, and Oracle had fewer than 450 employees. The typical personal computer had a 10 megabyte hard drive, and a dot-com Internet domain was just a concept.

We know how much these technologies have changed since then, how they have been embraced by the public, and (to some degree at least) where they are going in the future. This article looks at how smart metering technology has developed over the same period. What has been the catalyst for advancements? And, most important, what does that past tell us about the future of smart metering?

Peter Drucker once said that “trying to predict the future is like trying to drive down a country road at night with no lights while looking out the back window.”

Let’s take a brief look out the back window, before driving forward.

Past Developments

Developments in the parallel field of wireless communications, with its strong standards base, are readily delineated into clear technology generations. While we cannot as easily pinpoint definitive phases of smart metering technology, we can see some major transitions and discern patterns from the large deployments illustrated in Figure 1, and perhaps, even identify three broad smart metering “generations.”

The first generation is probably the clearest to delineate. The first 10 years of smart metering deployments (until about 2004) were all one-way wireless, limited two-way wireless, or very low-bandwidth power-line carrier communications (PLC) to the meter, concentrated in the U.S. The market at this time was dominated by Distribution Control Systems, Inc. (DCSI) and, what was then, CellNet Data Systems, Inc. Itron Fixed Network 2.0 and Hunt Technologies’ TS1 solution would also fit into this generation.

More than technology, the strongest characteristic of this first generation is the limited scope of business benefits considered. With the exception of Puget Sound Energy’s time-of-use pricing program, the business case for these early deployments was focused almost exclusively on reducing meter reading costs. Effectively, these early deployments reproduced the same business case as mobile automated meter reading (AMR).

By 2004, approximately 10 million of these smart meters had been installed in the U.S. (about 7 percent of the national total); however, whatever public perception of smart metering there was at the time was decidedly mixed. The deployments received scant media coverage, which focused almost solely on troubled time-of-use pricing programs, perhaps digressing briefly to cover smart metering vendor mergers and lawsuits. But generally smart meters, by any name, were unknown among the general population.

Today’s Second Generation

By the early 2000s, some utilities, notably PPL and PECO, both in Pennsylvania, were beginning to expand the use of their smart metering infrastructure beyond the simple meter-to-cash process. With incremental enhancements to application integration that were based on first generation technology, they were initiating projects to use smart metering to: transform outage identification and response; explore more frequent reading and more granular data; and improve theft detection.

These initiatives were the first to give shape to a new perspective on smart metering, but it was power company Enel’s dramatic deployment of 30 million smart meters across Italy that crystallized the second generation.

For four years leading to 2005, Enel fully deployed key technology advancements, such as universal and integrated remote disconnect and load limiting, that previously did not exist on any real scale. These changes enabled a dramatically broader scope of business benefits as this was the first fully deployed solution designed from the ground up to look well beyond reducing meter reading costs.

The impact of Enel’s deployment and subsequent marketing campaign on smart metering developments in other countries should not be underestimated, particularly among politicians and regulators outside the U.S. In European countries, particularly Italy, and regions such as Scandinavia, the same model (and in many cases the same technology) was deployed. Enel demonstrated to the rest of the world what could be done without any high-profile public backlash. It set a competitive benchmark that had policymakers in other countries questioning progress in their jurisdictions and challenging their own utilities to achieve the same.

North American Resurgence

As significant as Enel’s deployment was on the global development of smart metering, it is not the basis for today’s ongoing smart metering technology deployments now concentrated in North America.

More than the challenges of translating a European technology to North America, the business objectives and customer environments were different. As the Enel deployment came to an end, governments and regulators – particularly those in California and Ontario – were looking for smart metering technology to be the foundation for major energy conservation and peak-shifting programs. They expected the technology to support a broad range of pricing programs, provide on-demand reads within minutes, and gather hourly interval profile data from every meter.

Utilities responded. Pacific Gas & Electric (PG&E), with a total of 9 million electric and natural gas meters, kick-started the movement. Others, notably Southern California Edison (SCE), invested the time and effort to advance the technology, championing additions such as remote firmware upgrades and home area network support.

As a result, a near dormant North American smart metering market was revived in 2007. The standard functionality we see in most smart metering specifications today and the technology basis for most planned deployments in North America was established.

These technology changes also contributed to a shift in public awareness of smart meters. As smart metering was considered by more local utilities, and more widely associated with growing interest in energy conservation, media interest grew exponentially. Between 2004 and 2008, references to smart or advanced meters (carefully excluding smart parking meters) in the world’s major newspapers nearly doubled every year, to the point where the technology is now almost common knowledge in many countries.

The Coming Third Generation

In the 25 years since smart meters were first substantially deployed, the technology has progressed considerably. While progress has not been as rapid as advancements in consumer communications technologies, smart metering developments such as universal interval data collection, integrated remote disconnect and load limiting, remote firmware upgrades and links to a home network are substantial advancements.

All of these advancements have been driven by the combination of forward-thinking government policymakers, a supportive regulator and, perhaps most important, a large utility willing to invest the time and effort to understand and demand more from the vendor community.

With this understanding of the drivers, and based on the technology deployment plans, we can map out key future smart metering technology directions. We expect to see the next generation of smart metering exhibit two dominant differences from today’s technology. This includes increased standardization across the entire smart metering solution scope and changes to back-office systems architecture that enables the extended benefits of smart metering.

Increased Standardization

The transition to the next generation of smart metering will be known more for its changes to how a smart meter works, rather than what a smart meter does.

The direct functions of a smart meter appear to be largely set. We expect to see continued incremental advancements in data quality and read reliability; improved power quality measurement; and more universal deployment of a remote disconnect and load limiting.

But how a smart meter provides these functions will further change. We believe the smart meter will become a much more integrated part of two networks: one inside the home; the other along the electricity distribution network.

Generally, an expectation of standards for communication from the meter into a home area network is well accepted by the industry – although the actual standard to be applied is still in question. As this home area network develops, we expect a smart meter to increasingly become a member of this network, rather than the principal mechanism in creating one.

As other smart grid devices are deployed further down the low voltage distribution system, we expect utilities to demand that the meter conform to these network communications standards. In other words, utilities will continue to reject the idea that other types of smart grid devices – those with even greater control of the electrical network – be incorporated into a proprietary smart meter local area network.

It appears that most of this drive to standardization will not be led by utilities in North America. For one, technology decisions in North America are rapidly being completed (for this first round of replacements, at least). The recent Federal Regulatory Energy Commission (FERC) staff report, entitled “2008 Assessment of Demand Response and Advanced Metering” found that of the 145 million meters in the U.S., utilities have already contracted to replace nearly 52 million with smart meters over the next five to seven years.

IBM’s analysis indicated that larger utilities have declared plans to replace these meters even faster – approximately 33 million smart meters by 2013. The meter communications approach, and quite often the vendors chosen for these deployments, has typically already been selected, leaving little room to fundamentally change the underlying technological approach.

Outside of Worldwide Interoperability for Microwave Access (WiMAX) experiments by utilities such as American Electric Power (AEP) and those in Ontario, and shared services initiatives in Texas and Ontario, none of the remaining large North American utilities appear to have a compelling need to drive dramatic technology advancements, given rate and time pressures from regulators.

Conversely, a few very large European programs are poised to push the technology toward much greater standards adoption:

  • EDF in France has started a trial of 300,000 meters following standard PLC communications from the meter to the concentrator. The full deployment to all 35 million EDF meters is expected to follow.
  • The U.K. government recently announced a mandatory replacement of both electricity and natural gas meters for all 46 million customers between 2010 and 2020. The U.K.’s unique market structure with competitive retailers having responsibility for meter ownership and operation is driving interoperability standards beyond currently available technology.
  • With its PRIME initiative, the Spanish utility Iberdrola plans to develop a new PLC-based, open standard for smart metering. It is starting with a pilot project in 2009, leading to full deployment to more than 10 million residential customers.

The combination of these three smart metering projects alone will affect 91 million smart meters, equal to two thirds of the total U.S. market. This European focus is expected to grow now that the Iberdrola project has taken the first steps to be the basis for the European Commission’s Open Meter initiative, involving 19 partners from seven European countries.

Rethinking Utility System Architectures

Perhaps the greatest changes to future smart metering systems will have nothing to do with the meter itself.

To date, standard utility applications for customer care and billing, outage management, and work management have been largely unchanged by smart metering. In fact, to reduce risk and meet schedules, utilities have understandably shielded legacy systems from the changes needed to support a smart meter rollout or new tariffs. They have looked to specialized smart metering systems, particularly meter data management systems (MDMS), to bridge the gap between a new smart metering infrastructure and their legacy systems.

As a result, many of the potential benefits of a smart metering infrastructure have yet to be fully realized. For instance, billing systems still operate on cycles set by past meter reading routes. Most installed outage management applications are unable to take advantage of a direct near-real-time connection to nearly every end point.

As application vendors catch up, we expect the third generation of smart meters to be characterized by changes to the overall utility architectures and the applications that comprise them. As applications are enhanced, and enterprise architectures adapted to the smart grid, we expect to see significant architectural changes, such as:

  • Much of the message brokering functions from disparate head-end systems to utility applications in an MDMS will migrate to the utility’s service bus.
  • As smart meters increasingly become devices on a standards-based network, more general network management applications now widely deployed for telecommunications networks will supplement vendor head-end systems.
  • Complex estimating and editing functions will become less valuable as the technology in the field becomes more reliable.
  • Security of the system, from home network to the utility firewall, needs to meet the much higher standards associated with grid operations, rather than those arising from the current meter-as-the-cash-register perspective.
  • Add-on functionality provided by some niche vendors will migrate to larger utility systems as they evolve to a smart metering world. For instance, Web presentment of interval data to customers will move from dedicated sites to become a broad part of utilities’ online offerings.

Conclusions

Looking back at 25 years of smart metering technology development, we can see that while it has progressed, it has not developed at the pace of the consumer communications and computing technologies they rely upon – and for good reasons.

Utilities operate under a very different investment timeframe compared to consumer electronics; decisions made by utilities today need to stand for decades, rather than mere months. While consumer expectations of technology and service continue to grow with each generation, in the regulated electricity distribution industry, any customer demands are often filtered through a blurry political and regulatory lens.

Even with these constraints, smart metering technology has evolved rapidly, and will continue to change in the future. The next generation, with increased standardized integration with other networks and devices, as well as changes to back office systems, will certainly transform what we now call smart metering. So much so, that much sooner than 25 years from now, those looking back at today’s smart meters may very well see them as we now see those watermelon-sized cell phones of the 1980’s.

Silver Spring Networks

When engineers built the national electric grid, their achievement made every other innovation built on or run by electricity possible – from the car and airplane to the radio, television, computer and the Internet. Over decades, all of these inventions have gotten better, smarter and cheaper while the grid has remained exactly the same. As a result, our electrical grid is operating under tremendous stress. The Department of Energy estimates that by 2030, demand for power will outpace supply by 30 percent. And this increasing demand for low-cost, reliable power must be met alongside growing environmental concerns.

Silver Spring Networks (SSN) is the first proven technology to enable the smart grid. SSN is a complete smart grid solutions company that enables utilities to achieve operational efficiencies, reduce carbon emissions and offer their customers new ways to monitor and manage their energy consumption. SSN provides hardware, software and services that allow utilities to deploy and run unlimited advanced applications, including smart metering, demand response, distribution automation and distributed generation, over a single, unified network.

The smart grid should operate like the Internet for energy, without proprietary networks built around a single application or device. In the same way that one can plug any laptop or device into the Internet, regardless of its manufacturer, utilities should be able to “plug in” any application or consumer device to the smart grid. SSN’s Smart Energy Network is based on open, Internet Protocol (IP) standards, allowing for continuous, two-way communication between the utility and every device on the grid – now and in the future.

The IP networking standard adopted by Federal agencies has proven secure and reliable over decades of use in the information technology and finance industries. This network provides a high-bandwidth, low-latency and cost-effective solution for utility companies.

SSN’s Infrastructure Cards (NICs) are installed in “smart” devices, like smart meters at the consumer’s home, allowing them to communicate with SSN’s access points. Each access point communicates with networked devices over a radius of one or two miles, creating a wireless communication mesh that connects every device on the grid to one another and to the utility’s back office.

Using the Smart Energy Network, utilities will be able to remotely connect or disconnect service, send pricing information to customers who can understand how much their energy is costing in real time, and manage the integration of intermittent renewable energy sources like solar panels, plug-in electric vehicles and wind farms.

In addition to providing The Smart Energy Network and the software/firmware that makes it run smoothly, SSN develops applications like outage detection and restoration, and provides support services to their utility customers. By minimizing or eliminating interruptions, the self-healing grid could save industrial and residential consumers over $100 billion per year.

Founded in 2002 and headquartered in Redwood City, Ca., SSN is a privately held company backed by Foundation Capital, Kleiner Perkins Caufield & Byers and Northgate Capital. The company has over 200 employees and a global reach, with partnerships in Australia, the U.K. and Brazil.

SSN is the leading smart grid solutions provider, with successful deployments with utilities serving 20 percent of the U.S. population, including Florida Power & Light (FPL), Pacific Gas & Electric (PG&E), Oklahoma Gas & Electric (OG&E) and Pepco Holdings, Inc. (PHI), among others.

FPL is one of the largest electric utilities in the U.S., serving approximately 4.5 million customers across Florida. In 2007, SSN and FPL partnered to deploy SSN’s Smart Energy Network to 100,000 FPL customers. It began with rigorous environmental and reliability testing to ensure that SSN’s technology would hold up under the harsh environmental conditions in some areas of Florida. Few companies are able to sustain the scale and quality of testing that FPL required during this deployment, including power outage notification testing, exposure to water and salt spray and network throughput performance test for self-healing failover characteristics.

SSN’s solution has met or exceeded all FPL acceptance criteria. FPL plans to continue deployment of SSN’s Smart Energy Network at a rate of one million networked meters per year beginning in 2010 to all 4.5 million residential customers.

PG&E is currently rolling out SSN’s Smart Energy Network to all 5 million electric customers over a 700,000 square-mile service area.

OG&E, a utility serving 770,000 customers in Oklahoma and western Arkansas, worked with SSN to deploy a small-scale pilot project to test The Smart Energy Network and gauge customer satisfaction. The utility deployed SSN’s network, along with an energy management web-based portal in 25 homes in northwest Oklahoma City. Another 6,600 apartments were given networked meters to allow remote initiation and termination of service.

Consumer response to the project was overwhelmingly positive. Participating residents said they gained flexibility and control over their household’s energy consumption by monitoring their usage on in-home touch screen information panels. According to one customer, “It’s the three A’s: awareness, attitude and action. It increased our awareness. It changed our attitude about when we should be using electricity. It made us take action.”

Based on the results, OG&E presented a plan for expanded deployment to the Oklahoma Corporation Commission for their consideration.

PHI recently announced its partnership with SSN to deliver The Smart Energy Network to its 1.9 million customers across Washington, D.C., Delaware, Maryland and New Jersey. The first phase of the smart grid deployment will begin in Delaware in March 2009 and involve SSN’s advanced metering and distribution automation technology. Additional deployment will depend on regulatory authorization.

The impact of energy efficiency is enormous. More aggressive energy efficiency efforts could cut the growth rate of worldwide energy consumption by more than half over the next 15 years, according to the McKinsey Global Institute. The Brattle Group states that demand response could reduce peak load in the U.S. by at least 5 percent over the next few years, saving over $3 billion per year in electricity costs. The discounted present value of these savings would be $35 billion over the next 20 years in the U.S. alone, with significantly greater savings worldwide.

Governments throughout the EU, Canada and Australia are now mandating implementation of alternate energy and grid efficiency network programs. The Smart Energy Network is the technology platform that makes energy efficiency and the smart grid possible. And, it is working in the field today.

The Smart Grid Gets Real

Utilities around the world are facing a future that demands technology and service to better measure, manage and control distributed resources. Sensus has anticipated that future with real-world solutions that are already at work in millions of households today. As a leading provider of advanced metering and related communications technologies to utilities worldwide, Sensus has been aggressively pushing the boundaries of utility management. Our innovative communication systems enable utilities to intelligently utilize their resources with unprecedented efficiency.

FlexNet Smart Grid Solution

FlexNet is the electric utility industry’s most powerful AMI solution. It meets AMI requirements of today; ubiquity, redundancy, security and demand response, and is smart grid ready. FlexNet is simple; its lean architecture uses a powerful, industry-leading two Watts of radio power to transmit information that maximizes range and minimizes operational costs with low infrastructure requirements. FlexNet insures sustainability, protecting the utility infrastructure investment and uninterrupted delivery.

Every FlexNet endpoint is equipped with the ability to accept downloadable revised code; modulations, protocols, frequency of operation, even data rate can be fully upgraded as future requirements and features are developed. Sensus FlexNet further mitigates risk by using APA™ (All Paths Always) technology; this ultimate form of self-healing ensures critical messages are delivered without re-routing delay.

iCon Smart Meters

The iCon line of solid state smart meters integrates seamlessly with the FlexNet AMI solution. Communication vendors and metrology engineers nationwide consistently find that the advanced family of Sensus meters provides complete functionality, superior reliability, flexible integration capability, industry standards compatibility, and economical value. The modular mechanical, electrical, and software designs, in combination with the advanced sensing capability, predictably deliver the speed, accuracy, and reliability required to meet today’s electric utility needs. With an unsurpassed accuracy exceeding ANSI C12.20 (Class 0.2), the iCon Meter by Sensus is built with a backbone of reliability and precision.

Customer Relationships and the Economy

A little over a year ago, the challenges facing the global energy and utilities market were driving a significant wedge between utilities and their customers. In Western European markets, price increases across gas, electricity and water, combined with increased corporate earnings, left many utilities in the uncomfortable position of being seen as profiteering from customers unable to change suppliers for significant benefit.

Headline-makers had a field day, with gross simplification of the many utilities’ business models. They made claims about “obscene profits,” while citing the “long-suffering” consumer position [1]. Now, more than a year later, gas and electricity prices are falling, but the severity and pace of the wider economic downturn has given no time for utilities to re-position themselves with customers. Brand and relationship-enhancing programs such as smart metering and energy efficiency are still largely in their infancy.

The evolving relationship with the customer base, where customer expectations are resulting in a more participatory, multi-channel engagement, comes at a time when the evolution of smart networks and metering solutions are on the cusp of driving down cost to serve and improving service levels and options. Significant benefits accrue from consumption measurement and management capabilities. Benefits also result from the opportunity to transform the consumer relationship by pushing into new areas such as home device management, more personalised tariffs and easier debt arrangements. The position for utilities, therefore, should be favourable – finally being seen as working on a more participatory relationship with their customers.

For consumers, the consequences of recession include an increased pressure on household spending. In competitive markets, there could be increased churn as the ever-changing “best-buys” attract customers. For utilities, increased churn rates are obviously bad news – the cost of new customer acquisition often wipes out profit associated with consumption by that customer for months, even years. Moreover, while utilities are working on marketing the best deals to acquire and retain customers – and on piloting smart technologies in the home – consumers’ familiarity with new technologies and their allegiance to some brands presents an opportunity for third parties to gain greater hold on the customer relationship.

Take the case of smart metering, for example, where many utilities are engaging upon pilot and larger rollouts. This is an area of innovation that should deliver benefits to both consumers and utilities. The assured business benefits to the utility companies come not only from applying the technology to lower operational costs, but also from enhancing their brand and customer service reputation. To the customer, smart technologies offer consumption details in an understandable form and give the promise of accurate commodity billing.

The risk is that the potentially lucrative relationship between customer and utility is currently damaged to a point where telecommunications providers, retailers or technology companies could step in with attractive, multi-service offerings. That could relegate the utility to simple supply activities, unable to gain a significant hold in home engagement. Certainly, utilities will still witness savings from automated meter reading and improved billing accuracy, but this commoditisation path for the utility company will limit profitable growth and push them further away from customers. Combine this with increased churn, and suddenly the benefits of smart technology deployment could be wiped out for the utility company.

This is not just an issue associated with smart technologies – the entire customer relationship journey with a utility is under threat from non-utility entrants (See Figure 1). Consider the area of consumer marketing and sign-up. Third parties that simply market other companies’ services have already taken a position in this part of the customer journey by providing Internet sites that allow tariff comparison and online switching of suppliers. The brand awareness of the comparison sites has already begun to gain the trust of the customer and the utility brand becomes more remote – the start of an uneasy decline. Additionally, in receiving fees for bringing customers to utilities, these companies thrive on churn – driving up utility cost and driving an even greater gap into the consumer-utility relationship.

Further credence to the challenges comes in the areas around presentation of information to customers. Any utility information channel will demand attention to “stickiness” when using technology such as the Internet for displaying utility bills and consumption data. This information has to be pushed to consumers in an attractive, understandable, and above all, personal format. Does the traditional utility information quality and flow have enough appeal for the average consumer to repeatedly view over time? It could be argued that third parties have the ability to blend in more diverse information to improve stickiness on, for example, handheld devices that give the consumer other benefits such as telephony, traffic and weather updates.

Customer Experience Risks

Traditionally, utilities are seen as relatively “recession proof,” operating on longer- term cycles than financial and retail markets. It is this long-term view that, coupled with an already disjointed customer relationship, poses a significant risk to utilities in the next two years. Customers will react in the competitive markets to the feeling of being “cornered” in an environment where few utilities truly differentiate themselves on customer service, product, tariff or brand. Research suggests that consumers are driving change in the relationship with their utilities, and it is this change that opens up opportunity for others (“Plugging in the Consumer”, IBM Institute for Business Value, 2007).

Reaction may not come soon; rarely do new entrants come into a recessionary market. But the potential for non-utilities to begin exploiting the gap between customer and utility should be cause for concern.

The parallel of these changes and risks was seen in the telco landline market over the last two decades. Several of the big, former-monopoly landline carriers are now perceived as commodity bandwidth providers, with declining core customer numbers and often-difficult regulatory challenges. Newer, more agile companies have stepped into the role of “owning” the consumer relationship and are tailoring the commodities into appealing packages. The underlying services may still come from the former-monopoly, but the customer relationship is now skewing toward the new entrant.

There are strategies that can be proactively deployed, individually or in combination, that improve the resilience of a utility through a recession, and that indeed redraw the client relationship to the point where profitability can increase without attracting the appearance of excess. These strategies resist the potential demise of the utilities to commodity providers, allowing for a value-add future based on their pervasive presence in the home.

The five steps outlined below revolve around the need to focus on the fundamentals, namely customer relationships and cash:

  1. Know Your Customer. Like most companies, utilities can benefit greatly by knowing more about customers. By engaging upon a strategy of ongoing information collection, customer segmentation and profitability analysis, plans can be put in place to detect and react to customer attrition risks. This includes early identification of changes to a customer’s circumstances, such as the ability to settle debt, allowing the utility to work proactively with the customer to address the issue. An active relationship style will show consumers that utilities care and understand, increasing brand loyalty, and hence, lowering the cost to serve.
  2. Free Up Locked Cash. Although recession-resistant in the short-term, identifying organic sources of improved cash flow can be an important source of funding for utilities that need to invest in improving customer relationships and capabilities. Industry benchmarks indicate that most utilities have opportunities to plug leaks in their working capital processes, with the potential of tapping into a significant and accessible source of free cash flow. For example, consider the traditionally neglected, under-invested area of consumer debt. With the economic downturn, debt levels are likely to rise, and, if unchecked, costs and cash flow will be adversely impacted.

    Focus areas for addressing the issue and freeing up locked cash include:

    • Using process management techniques such as activity-based management or Lean Six Sigma to identify opportunities for performance improvement across the billing, collections and credit-management processes;
    • Focusing on developing the skills and operational structures required to better integrate the meter to cash functions; and
    • Optimizing the use of utility-specific debt tools that work with the core systems.

Additionally, gaining insights through precision analytics to better manage debt functions – similar to best practices in banking and telecommunications – needs to be accelerated.

  1. Focus on the Future. Cost cutting is inevitable by many companies in this economic environment. It is important to understand the medium-to-long-term impact of any cuts on the customer relationship to determine if they could hurt profitability by increasing churn and related cost-to-serve metrics. Thus, utilities must achieve a clear understanding of their baseline performance, and have a predictive decision-making capability that delivers accurate, real-time insights so they can be confident that any actions taken will yield the best results.
  2. Innovate. Utilities traditionally work on longer investment cycles than many other businesses. When compared to consumer-facing industries, that can result in consumer perception that they are lacking innovation. Many consumers readily accept new offerings from retailers, telcos and technology firms, and the promise of a smart home will clearly be of strong commercial interest to these individuals. That’s why utilities must act now to show how they are changing, innovating for the future and putting control into the hands of the consumer. Smart metering programs will help the utilities reposition themselves as innovators. The key will be to use technology in a manner that bonds the customer better with the utility.
  3. Agility is King. Longer investment cycles in the utility sector, combined with the massive scale of operations and investment, often restrict a utilities’ ability to be agile in their business models. The long-term future of many utilities will depend upon being able to react to new consumer, technology and regulatory demands within short timescales. Innovation is only innovative for a short time – businesses need to be ready to embrace and exploit innovation with new business models.

Take Action Now

Many will argue that the current utility programs of change, such as core system replacement, smart metering and improving customer offerings, will be enough to sustain and even enhance the customer relationship. The real benefit, however, will be from building upon the change, moving into new products, delivering personalized services and tariffs, and demonstrating an understanding of individual consumer needs.

Still, utilities may struggle to capture discretionary spending from customers ahead of telcos, retailers, financial firms and others. Simply put, action needs to be taken now to prevent the loss of long-term customer relationships. For utilities, doing more of the same in this dynamic and changing market may simply not be good enough!

References:

  1. Multiple references, especially in the British press, including this one from Energy Saving Trust: http://www.energysavingtrust.org.uk/Resources/Daily-news/Gas-and-Electricity/Probe-demanded-into-energy-rip-off/(energysavingtrust)/20792

Be a People Person

I have to admit it. Despite all the exciting new technologies out there, I am finding myself to be a people person when it comes to building smarter grids and more intelligent utilities. Granted, technology is rapidly developing and the utility industry is finding itself in the middle of more and more automation. However, people – from linemen to consumers – will remain critical components for delivering information-enabled energy.

In the many conversations I have with utilities and other industry thought leaders, we often start out talking about smart technology, but eventually our chats settle on people. People can ultimately make or break even the most promising technologies – from personnel and consumers adopting and using the technology to executives driving technology investments. So, in a world buzzing with new technologies, it is important to reacquaint ourselves with people. This article traces some of my conversations about what an intelligent utility is, how people fit in – both on the consumer and utility personnel side – and what the utility industry can do to better involve people. As is my usual style, I will serve up these critical subjects with a side of humor and perspectives outside the utility industry. So be prepared to learn more about yoga, Nashville, crystal balls and the telecom industry, too.

What Is An Intelligent Utility ?

Before understanding the importance of people, let’s take a moment to understand where people fit into smart grids and intelligent utilities. Utilities are no longer exempt from change. From economic stimulus plans to carbon controls, to the impending electric vehicle flood, we must face the fact that the utility industry will undergo significant changes in the coming years, months and even minutes. Now, it is not so much a question of what changes will happen, but how – and how well – will the utility industry adapt to these changes?

A frequent answer to this question has been a “smart grid,” but most smart grid discussions inevitably lead to these questions:

  • How do we get to a smart grid?
  • When do we know when we are there?
  • What is a smart grid anyway?

These are not easy questions. Many groups define the smart grid, but how can you tell when a utility has one? Better understanding this challenge requires an unusual, but useful comparison: Nashville and Nirodha – a state of mind in yoga. Let’s say you are traveling to Nashville. You would see landmarks that you could only find in Nashville, such as the Grand Ole Opry, B.B. King’s Blues Club and the Bell- South Tower. Smart grid landmarks, however, are harder to come by. Utilities can install smart meters and other smart sensors on their grid, but having these technologies does not necessarily mean they have arrived at a smart grid. To add to the confusion, other smart grid components, such as demand response, distribution automation and more advanced metering, have already been around for years.

Although such technologies can support a smarter grid, the smart grid is more than just acquiring certain technology landmarks. So, although it is a nice place, you shouldn’t just think Nashville when you think smart grid. Think Nirodha. For those of you who aren’t yoga enthusiasts, Nirodha is a state of mind in yoga in which you become more focused and aware of an object. In the case of a utility, the object is primarily the transmission and distribution network. As a utility becomes more aware and ultimately more knowledgeable about its network, it can make better decisions about its operation.

Furthermore, as a company builds more knowledge about its grid, it develops not only a smarter grid, but also a more intelligent utility. An intelligent utility overlays information on energy that goes beyond the transmission and distribution network all the way from generation to end users, maximizing its reliability, affordability and sustainability. Essentially, utilities are delivering information-enabled energy. And technology is just one piece for delivering this sort of energy. Here is a quick run-down of the key components in an intelligent utility:

  • Process & technology: Utility objectives and their impact on business process change and smart technology deployment;
  • Economic models: The challenges and opportunities of new paradigms. So this is not just the changes involved with upgrading a technology – like a customer information or geographic information system – but the changes from initiatives like electrifying transportation and microgrids that could radically alter utility companies and the roles of generators and consumers;
  • Finance: Investment trends associated with smart technologies;
  • Public policy: The impact of politics on energy – including efforts by regulators and legislators. These groups ultimately set up the framework that determines whether and how intelligent initiatives move forward; and
  • People: The knowledge, skills and abilities required for both the workforce and consumers in an information-enabled environment.

Involving Workforce

The rest of this article will take a little bit closer look at the last component – people. As we move toward information-enabled energy, the utility workforce will undergo some significant changes – from new job titles, to new knowledge, skills and abilities (KSAs), to new people joining utility companies from other industries.

Ryan Cook, vice president of the employment services division at Energy Central, has pointed out that “In today’s utilities, employee KSAs are based primarily on providing electrical power as a product. These KSAs support the rules-based, process-oriented, functionally structured, and cost-focused business needs of today’s utility. In the future, however, there will be a massive paradigm shift from providing just a product to providing customers with customizable services and solutions for their unique energy needs. The result will be a shift toward KSAs that support a more agile, innovative, collaborative, cross-functional, service-oriented utility of the future. Employees will need to deal with constantly evolving technology.”

So, digitizing the grid will change personnel needs. We know that much, but the big unknown is how exactly will those needs change? And where is a good crystal ball when you need one? Since my snow globe wasn’t working, I thought about other industries that have gone through a digital revolution, which brought me to the telecom and cable industry. I learned much from Alan Babcock, president of Broadband Training Associates. As this industry digitized its grid over the last 13 years and began to focus more on services as opposed to products, it saw significant workforce changes – touching everyone from field crews, to executives, to marketing folks – that could happen to the utility industry as well.

Out In the Field

Before digitizing the telecom and cable industry, many field crews were still pencil and paper, and some still are today. But digitization changes weren’t just about figuring out how to use a truck-mounted laptop. The workforce has a whole new job to do today. In particular, they now have to troubleshoot new problems on multiple services in the network and become experts at devices on an end user’s premise.

Before digitization, field crews dealt with one service – like video in the cable industry – but now they have to balance multiple services in the same network, including voice, data and video. The decisions you make for one service will ultimately impact the others. So, with multiple services, it changes how you do regular maintenance, how you troubleshoot networks, and how you take the network down to make repairs. On top of that, technicians may not be able to take down certain parts of the network because of service level agreements with customers.

Besides dealing with multiple services, field crews have to better understand the devices that extend into customer premises – including modems for Internet or set-top boxes for cable. It can be embarrassing for a telecom or cable company when the consumer knows more about consumer devices than the technician.

Back In the Office

Digitizing the network not only changed KSAs for field crews, but has changed things in the back office of telecom and cable companies as well. These changes occurred in the areas of marketing, customer service, planning and IT.

  • Marketing to customers: Digitization provides cable and telecom companies with increased visibility into the customer premises. This is not only helpful with determining whether customers have service, but also understanding their entertainment preferences. These companies now better understand what entertainment you watch and when you watch it. Ultimately, they have a lot of information at their disposal to be able to better market to you. Telecom companies, however, weren’t traditionally in the entertainment industry, so better marketing to consumers required a new group of employees from outside telecom.
  • Customer service: Customer service has changed in many ways with the digitization of the telecom and cable industry. With a smarter grid, the utility industry often focuses on benefits that it will bring to the customer representatives in terms of access to more information, but there are other benefits to consider as well. An interesting twist in the telecom and cable industry is that as the network gets more complex, a customer service agent’s job gets somewhat simpler. Essentially, customer service representatives have to recall fewer technical details about the network than they did before. It is not as important that they understand how the networks function because they have better visibility into the premise and have more intelligent systems to walk them through trouble-shooting problems.
  • Capital and strategic planning: Digitization has changed the planning time horizon and knowledge requirements for telecom and cable executives. They must factor in the dizzying technology advancements in the industry; think about the rapid movement from 2G to 3G to 4G networks and beyond. The five-year plan now has to be the three-year plan. From a planning standpoint, they also need to better understand the networks in order to figure out how to best utilize and benefit from services that are enabled by those networks.
  • Designing and maintaining IT systems: Aside from learning how to design and maintain new technologies and systems, the technology personnel in telecom and the cable industry have learned some important lessons as they digitize the networks. The first is to more carefully consider the usefulness of new technologies. If a new technology comes along, it doesn’t mean that it has to be used. If a new technology does make sense to use, technology personnel need to consider the human aspects involved with making that change, including change management and making sure the technology is ready when people actually begin using it.

Involving Customers

Not only will the intelligent utility impact its own personnel, but it will impact consumers as well. In particular, utilities will have to help consumers to understand the value of changes and get them to participate in intelligent initiatives.

As I am sure many of you have realized from conversations with friends and family, many people do not understand smart grid benefits or even how the grid really works. Although more people are starting to realize the value, a key challenge is how to get consumers to grasp these concepts and support a smarter grid and more intelligent utility. Utilities have to figure out how to make these things real for people – and are finding many ways to do that. As one utility executive pointed out, “A technology center served to convince our community stakeholders and our PUC that this appears to be a worthwhile journey. The awareness to the consumer was a tremendous value. They were able to start thinking of the value of what we’re trying to build rather than what we’re trying to build.”

Many intelligent initiatives, from demand response to real-time pricing, focus on the end user and require some level of consumer effort. Consumer participation is key for success, but utilities are finding it challenging to get participation. Solutions range from more automation in controlling household appliances and HVAC systems to competition between neighbors regarding energy consumption, but there is still much work to be done in this area, depending on consumer demographics.

Be A People Person

It is easy to get caught up in the technology hype, but as the examples above demonstrate, it is important to keep people in the equation when looking at smart initiatives. People play a key role in determining their success or failure. By preparing for the people factor and considering them in smart initiatives, utilities can better ensure the adoption and success of new technologies and processes.

Shaping a New Era in Energy

In the last few years, the world has seen the energy & utilities business accelerate into a significant period of transformation as a result of the smart grid and related technologies. Today, with some early proponents leading the way, the industry is on the verge of a step-change improvement that some might even classify as a full-scale revolution. Utilities are viewed not only as being a critical link in solving the challenges we face related to climate change and the care of our planet’s energy resources, but they’re becoming enablers of growth and innovation – and even new products, services and jobs. Clearly the decisions the industry is making today around the world’s electricity networks will impact our lives for decades to come.

If the current economic environment has muted any enthusiasm for this transformation, it hasn’t been much. With the exception, perhaps, of plummeting oil prices temporarily providing some sense of calm in the sector, there are probably few people left who don’t believe the world needs to urgently address its clean, smart energy future. As of this writing, fledgling signs of an economic recovery are emerging, and along with it, increases in fossil fuel prices. As such, enthusiasm is growing over the debate about how countries will utilize billions in stimulus funding to enable the industry to achieve a new level of greatness.

There is a confluence of events helping us along this path of dramatic and beneficial change. IBM’s recent industry consumer survey (selected findings of which are featured in this publication in "Lighting the Way" by John Juliano) signals a future that is being shaped in part by a younger generation of digitally savvy people who care about – and are willing to participate in – our collective energy future. They willingly engage in more open communication with utility providers and tend to be better at understanding and controlling energy utilization.

As utilities instrument virtually all elements of the energy value chain from the power plant to the plug, they will improve service quality to these customers while reducing cost and improving reliability to a degree never before achievable. Customers engage because they see themselves as part of a larger movement to forestall the effects of climate change, or to battle price instability. This fully connected, instrumented energy ecosystem takes advantage of the data it collects, applying advanced analytics to enable real-time decisions on energy consumption. Some smart grid projects are already helping consumers save 10% of their bills, and reduce peak demand by 15%. Imagine the potential total savings when this is scaled to include companies, governments and educational institutions.

While positive new developments abound, they also are creating a highly complex environment, raising many difficult questions. For example, are families and businesses truly prepared to go on a "carbon diet" and will they stay on it? How will governments, with their increased stake in auto manufacturers, effectively and efficiently manage the transition toward PHEVs? Will industry players collaborate with one another to deal with stealth attacks on smart grids that are no longer the stuff of spy novels, but current realities we must face 24/7? How do we responsibly support the resurgence of nuclear-based power generation?

Matters of investment are also complex. Will there be sufficient public/private partnership to effectively stimulate investment in new businesses and models to profitably progress safe alternative energy forms such as solar, tidal, wind, geothermal and others? Will we have the "smarts" – and the financial commitment – to build more smarts into the reconstruction of ailing infrastructures?

Leading the Way

IBM has been a leading innovator in smart grid technology, significantly investing in energy and environmental programs designed to promote the use of intelligent energy worldwide. We created the Global Intelligent Utility Network Coalition, a strategic relationship with a small group of select utilities from around the world to shape, accelerate and share in the development of the smart grid. With the goal to lead industry organizations to smart grid transformation, we actively lead and participate in a host of global organizations including the GridWise® Alliance, Gridwise Architecture Council, EPRI’s Intelligrid program, and the World Energy Council, among others. By coming together around a shared vision of a smarter grid, we have an unprecedented opportunity to reshape the energy industry and our economic future.

The IBM experts who engage in these groups – along with the thousands of other IBMers working in the industry – have contributed significant thinking to the industry’s progress, not the least of which is the creation of the Smart Grid Maturity Model (SGMM) which has been handed over to the Carnegie Mellon Software Engineering Institute (SEI) for ongoing governance, growth and evolution of the model. Furthermore, the World Energy Council (WEC) has become a channel for the global dissemination of the model among its worldwide network of member committees.

IBM’s own Intelligent Utility Network (IUN) solution enables a utility to instrument everything from the meter in the home to miles of power lines to the network itself. In fact, the IUN looks a lot more like the Internet than a traditional grid. It can be interconnected to thousands of power sources – including climate-friendly ones – and its instrumentation generates new data for analysis, insight and intelligence that can be applied for the benefit of businesses and consumers alike.

Our deep integration skills, leading-edge technology, partner ecosystem and business and regulatory expertise have earned us roles in more than 50 smart grid projects around the globe with showcase projects in the U.S. Pacific Northwest, Texas, Denmark and Malta (See "The Smart Grid in Malta" by Carlo Drago in this publication) to name just a few. IBM also has a role in seven out of the world’s 10 largest advanced meter management projects.

The IBM Solution Architecture for Energy (SAFE), is a specialized industry framework focused on the management, maintenance, and integration of a utility’s assets and information, inclusive of generation, transmission and distribution, and customer operations. This is complemented by a world-class solution portfolio based on the most comprehensive breadth of hardware, software, consulting services, and open standards-based IT infrastructure that can be customized to meet the needs of today’s energy and utilities enterprises around the globe.

These activities are augmented by the renowned IBM Research organization that engages in both industry-specific and cross-industry research that influences our clients’ progress. This includes new computing models to handle the proliferation of end-user devices, sensor and actuators, connecting them with powerful back-end systems. How powerful? In the past year IBM’s Roadrunner supercomputer broke the "petaflop" barrier – one thousand trillion calculations per second using standard chip sets. Combined with advanced analytics and new computing models like "clouds" we’re turning mountains of data into intelligence, making systems like the smart grid more efficient, reliable and adaptive – in a word, smarter.

IBM Research also conducts First-of-a-Kind research – or FOAKs – in partnership with our clients, turning promising research into market-ready products and services. And our Industry Solution Labs around the world give IBM clients the chance to discover how leading-edge technologies and innovative solutions can be assembled and proven to help solve real business problems. For example, we’re exploring how to turn millions of future electric vehicles into a distributed storage system, and we maintain a Center of Excellence for Nuclear Power to improve design, safety analysis, operation, and nuclear modeling / simulation processes.

IBM is excited to be at the forefront of this changing industry – and our changing world. And we’re honored to be working closely with our clients and business partners in helping to evolve a smarter planet.

The Smart Grid in Malta

On the Mediterranean island of Malta, with a population of about 400,000 people on a land mass of just over 300 square kilometers, power, water and the economy are intricately linked. The country depends on electrically powered desalination plants for over half of its water supply. In fact, about 75 percent of the cost of water from these plants on Malta is directly related to energy production. Meanwhile, rising sea levels threaten Malta’s underground freshwater source.

Additionally, in line with the Lisbon strategy and the other European countries, the government of Malta has set an objective of transforming the island into a competitive knowledge economy to encourage investment by foreign companies. Meeting all of these goals in a relatively short period of time presents a complex, interconnected series of challenges that require immediate attention to ensure the country has a sustainable and prosperous future.

In light of this need, the Maltese National Utilities for Electricity and Water – Enemalta Corp. (EMC) and Water Services Corp. (WSC) – reached a partnership agreement with IBM to undertake a complete transformation of its distribution networks to improve operational efficiency and customer service levels. IBM will replace all 250,000 electricity meters with new devices, and connect these and the existing water meters to advanced information technology applications. This will enable remote reading, management and monitoring throughout the entire distribution network.

This solution will be integrated with new back-office applications for finance, billing and cash processes, as well as an advanced analytics tool to transform sensor data into valuable information supporting business decisions and improving customer service levels. It will also include a portal to enable closer interaction with – and more engagement by – the end consumers.

Why are the utility companies in Malta making such a significant investment to reshape their operations? To explore this question, it helps to start with a broader look at smart grid projects to see how they create benefits – not just for the companies making the investment, but for the local community as well.

Smart Grid Benefits

A case is often made that basic operational benefits of a smart grid implementation can be achieved largely through an Advanced Metering Infrastructure (AMI) implementation, which yields real-time readings for use in billing cycles, reduced operational cost in the low voltage network and more control over theft and fraud. In this view, the utility’s operational model is further transformed to improve customer relationship management through the introduction of flexible tariffs, remote customer connection/disconnection, power curtailment options and early outage identification through low voltage grid monitoring.

But AMI extended to a broader smart grid implementation has the potential to achieve even greater strategic benefits. One can see this by simply considering the variety of questions about the impact of the carbon footprint of human activity on the climate and other environmental factors. What is a realistic tradeoff between energy consumption, energy efficiency and economic and political dependencies on the local, national and international levels? Which energy sources will be most effective with such tradeoffs? To what extent can smaller, renewable resources replace today’s large, fossil-based power sources? Where this is possible, how can hundreds or thousands of dispersed, independently operated generators be effectively monitored?

Ultimately, distribution networks need to be smart enough to distinguish among today’s large-scale utility generators; customers producing solar energy for their own needs who are virtually disconnected from the grid; those using a wind power generator and injecting the surplus back into the grid; and end-use customers requiring marginal or full supply. An even more dispersed model for distributed generation will emerge once electric vehicles circulate in towns, placing complex new demands on the grid while offering the benefit of new storage capabilities to the network.

Interdependence

Together, water and power distributors, transmission operators, generators, market regulators and final customers will interact in a much more complex, interconnected and interdependent world. This is especially true in a densely populated, modern island ecosystem, where the interplay of electricity, water, gas, communications and other services is magnified.

These points of intersection take numerous shapes. For example, on a national scale, water and sewer services can consume a large portion of the available energy supply. Water service, which is essential to customer quality of life, also presents distribution issues that are similar in many ways to those embedded in the electric grid. At a more local scale, co-generation and micro-CHP generation plants make the interdependency of electricity and gas more visible. Furthermore, utilities’ experience at providing centrally managed services that afford comfort and convenience makes the provision of additional services – communication, security, and more – imaginable. But how to make these interconnections effective contributors to quality of life raises real economic questions. Is it sensible to make an overarching investment in multiple services? How can this drive increased operational efficiency and bring new benefits to customers? Can a clear return on investment be demonstrated to investors and bill payers?

Malta is an example of an island that operates a vertically integrated and isolated electricity system. Malta has no connections with the European electricity grid and no gas pipelines to supply its generators. In the current configuration of the energy infrastructure, all of its demand must be fulfilled by the two existing power plants, which generate power using entirely imported fossil fuel. Because of these limitations on supply, and dependencies on non-native resources, electricity distribution must be extremely efficient, limiting any loss of energy as much as possible. Both technical and commercial losses must be kept fully under control, and theft must be effectively eliminated from the system to avoid unfair social accounting and to ensure proper service levels to all customers.

Estimates of current economic losses in Malta are in the millions of Euros for just the non-technical losses. At these levels, and with limited generation capacity, quality of service and ability to satisfy demand at all times is threatened. Straining the system even further is the reality that Malta, without significant natural water sources, must rely on a seawater purification process to supply water to its citizens. This desalinization process absorbs roughly one-third of the annual power consumption on the island.

But the production process is not the only source of interdependency of electricity and water as the distribution principles of each have strong ties. In most locations in the world, electricity and water distribution have opposing characteristics that allow them to enjoy some symbiotic benefits. Electricity cannot be effectively stored, so generation needs to match and synchronize in time with demand. Water service generally has the opposite characteristic: in fact, it can be stored so easily that it is frequently stored as pre-generation capacity in hydro generation.

But on an island like Malta, this relationship is turned on its head. There is no natural water to store, and once produced, purified water should be consumed rather quickly. If it is produced in excess, then reservoir evaporation and pipeline losses can affect the desalinization effort and the final efficiency of the process. So in Malta, unlike much of the rest of the world, water providers tend to view customer demand in a similar way as electricity providers, and the demand profiles are unable to support each other as they can elsewhere.

These are qualitative observations. But if electricity and water networks can be monitored, and real-time data supplied, providers can begin to assess important questions regarding operational and financial optimization of the system, which will, among other benefits, improve reliability and service quality and keep costs low.

Societal Implications

An additional issue the government of Malta faces is its effort to ensure that the population has a sufficient and diverse educational and technical experience base. When a company is attracted to invest in Malta, it benefits from finding local natives with appropriate skills to employ; costs increase if too many foreign nationals must be brought in to operate the company. Therefore, pervasive education on information and communication technology-related topics is a priority for the government, aimed at young students, as well as adult citizens.

Therein lies a further – but no less important – benefit of bringing a smart grid to Malta. Energy efficiency campaigns supported by smart meters will not only help its citizens control consumption behavior and make more efficient and effective electricity and water operations a reality, but they will prove to be a project that helps raise the island’s technology culture in a new dimension. Meter installers will deal with palmtop and other advanced IT applications, learning to connect the devices not only to the physical electrical infrastructure, but also to the embedded information infrastructure. From smart home components to value-added services, commercial and industrial players will look to new opportunities that leverage the smart grid infrastructure in Malta as well, adding highly skilled jobs and new businesses to the Maltese economy.

Benefits will expand down to the elementary education levels as well. For example, it will be possible for schools to visit utility demonstration centers where the domestic meter can be presented as an educational tool. This potential includes making energy efficiency a door to educational programs on responsible citizenship, science, mathematics, environmental sustainability and many other key learning areas. Families will find new incentive to become familiar with the Internet as they connect to the utility’s website to control their energy bill and investigate enhanced tariffs for more cost-effective use of basic services.

Conclusion

Malta is famed for its Megalithic Temples – the oldest free-standing buildings in Europe, older than the Pyramids of Egypt [1]. But with its smart grid project, it stands to be the home of one of the newest and most advanced infrastructure projects as well. The result of the Maltese smart grid effort will be an end-to-end electricity and water transmission and distribution system. It will not only enable more efficient consumption of energy and water, but will completely transform the relationship of Maltese consumers with the utilities, while enhancing their education and employment prospects. These benefits go well beyond the traditional calculation of benefits of, for example, a simple AMI-focused project, and demonstrate that a smart grid project in an island environment can go well beyond simply improving utility operations. It can transform the entire community in ways that will improve the quality of life in Malta for generations to come.

Reference:

  1. 1 The Bradshaw Foundation, 2009