Thinking Smart

For more than 30 years, Newton- Evans Research Company has been studying the initial development and the embryonic and emergent stages of what the world now collectively terms the smart, or intelligent, grid. In so doing, our team has examined the technology behind the smart grid, the adoption and utilization rates of this technology bundle and the related market segments for more than a dozen or so major components of today’s – and tomorrow’s – intelligent grid.

This white paper contains information on eight of these key components of the smart grid: control systems, smart grid applications, substation automation programs, substation IEDs and devices, advanced metering infrastructure (AMI) and automated meter-reading devices (AMR), protection and control, distribution network automation and telecommunications infrastructure.

Keep in mind that there is a lot more to the smart grid equation than simply installing advanced metering devices and systems. A large AMI program may not even be the correct starting point for hundreds of the world’s utilities. Perhaps it should be a near-term upgrade to control center operations or to electronic device integration of the key substations, or an initial effort to deploy feeder automation or even a complete production and control (P&C) migration to digital relaying technology.

There simply is not a straightforward roadmap to show utilities how to develop a smart grid that is truly in that utility’s unique best interests. Rather, each utility must endeavor to take a step back and evaluate, analyze and plan for its smart grid future based on its (and its various stakeholders’) mission, its role, its financial and human resource limitations and its current investment in modern grid infrastructure and automation systems and equipment.

There are multiple aspects of smart grid development, some of which involve administrative as well as operational components of an electric power utility, and include IT involvement as well as operations and engineering; administrative management of customer information systems (CIS) and geographic information systems (GIS) as well as control center and dispatching operation of distribution and outage management systems (DMS and OMS); substation automation as well as true field automation; third-party services as well as in-house commitment; and of course, smart metering at all levels.

Space Station

I have often compared the evolution of the smart grid to the iterative process of building the international space station: a long-term strategy, a flexible planning environment, responsive changes incorporated into the plan as technology develops and matures, properly phased. What function we might need is really that of a skilled smart grid architect to oversee the increasingly complex duties of an effective systems planning organization within the utility organization.

All of these soon-to-be-interrelated activities need to be viewed in light of the value they add to operational effectiveness and operating efficiencies as well as the effect of their involvement with one another. If the utility has not yet done so, it must strive to adopt a systems-wide approach to problem solving for any one grid-related investment strategy. Decisions made for one aspect of control and automation will have an impact on other components, based on the accumulated 40 years of utility operational insights gained in the digital age.

No utility can today afford to play whack-a-mole with its approach to the intelligent grid and related investments, isolating and solving one problem while inadvertently creating another larger or more costly problem elsewhere because of limited visibility and “quick fix” decision making.

As these smart grid building blocks are put into service, as they become integrated and are made accessible remotely, the overall smart grid necessarily becomes more complex, more communications-centric and more reliant on sensor-based field developments.

In some sense, it reminds one of building the space station. It takes time. The process is iterative. One component follows another, with planning on a system-wide basis. There are no quick solutions. Everything must be very systematically approached from the outset.

Buckets of Spending

We often tackle questions about the buckets of spending for smart grid implementations. This is the trigger for the supply side of the smart grid equation. Suppliers are capable of developing, and will make the required R&D investment in, any aspect of transmission and distribution network product development – if favorable market conditions exist or if market outlooks can be supported with field research. Hundreds of major electric power utilities from around the world have already contributed substantially to our ongoing studies of smart grid components.

In looking at the operational/engineering components of smart grid developments, centering on the physical grid itself (whether a transmission grid, a distribution grid or both), one must include what today comprises P&C, feeder and switch automation, control center-based systems, substation measurement and automation systems, and other significant distribution automation activities.

On the IT and administrative side of smart grid development, one has to include the upgrades that will definitely be required in the near- or mid-term, including CIS, GIS, OMS and wide area communications infrastructure required as the foundation for automatic metering. Based on our internal estimates and those of others, spending for grid automation is pegged for 2008 at or slightly above $1 billion nationwide and will approach $3.5 billion globally. When (if) we add in annual spending for CIS, GIS, meter data management and communications infrastructure developments, several additional billions of dollars become part of the overall smart grid pie.

In a new question included in the 2008 Newton-Evans survey of control center managers, these officials were asked to check the two most important components of near-term (2008-2010) work on the intelligent grid. A total of 136 North American utilities and nearly 100 international utilities provided their comments by indicating their two most important efforts during the planning horizon.

On a summary basis, AMI led in mentions from 48 percent of the group. EMS/ SCADA investments in upgrades, new applications, interfaces et al was next, mentioned by 42 percent of the group. Distribution automation was cited by 35 percent as well.

Spending Outlook

The financial environment and economic outlook do not bode well for many segments of the national and global economies. One question we have continuously been asked well into this year is whether the electric power industry will suffer the fate of other industries and significantly scale back planned spending on T&D automation because of possible revenue erosion given the slowdown and fallout from this year’s difficult industrial and commercial environments.

Let’s first take a summary look at each of the five major components of T&D automation because these all are part and parcel of the operations/engineering view of the smart grid of the future.

Control Systems Outlook: Driven by SCADA-like systems and including energy management systems and distribution management software, this segment of the market is hovering around the $500 million mark on a global scale – excluding the values of turn-key control center projects (engineering, procurement and construction (EPC) of new control center facilities and communications infrastructure). We see neither growth nor erosion in this market for the near-term, with some up-tick in spending for new applications software and better visualization tools to compensate for the “aging” of installed systems. While not a control center-based system, outage management is a closely aligned technology development, and will continue to take hold in the global market. Sales of OMS software and platforms are already approaching the $100 million mark led by the likes of Oracle Utilities, Intergraph and MilSoft.

Substation Automation and Integration Programs: The market for substation IEDs, for new communications implementations and for integration efforts has grown to nearly $500 million. Multiyear programs aimed at upgrading, integrating and automating the existing global base of about a quarter million or so transmission and primary distribution substations have been underway for some time. Some programs have been launched in 2008 that will continue into 2011. We see a continuation of the growth in spending for critical substation A&I programs, albeit 2009 will likely see the slowest rate of growth in several years (less than 3 percent) if the current economic malaise holds up through the year. Continuing emphasis will be on HV transmission substations as the first priority for upgrades and addition of more intelligent electronic devices.

AMI/AMR: This is the lynchpin for the smart grid in the eyes of many industry observers, utility officials and perhaps most importantly, regulators at the state and federal levels of the U.S., Canada, Australia and throughout Western Europe. With nearly 1.5 billion electricity meters installed around the world, and about 93 percent being electro-mechanical, interest in smart metering can also be found in dozens of other countries, including Indonesia, Russia, Honduras, Malaysia, Australia, and Thailand. Another form of smart meters, the prepayment meter, is taking hold in some of the developing nations of the world. The combined resources of Itron, coupled with its Actaris acquisition, make this U.S. firm the global share leader in sales and installations of AMI and AMR systems and meters.

Protection and Control: The global market for protective relays, the foundation for P&C has climbed well above $1.5 billion. Will 2009 see a drop in spending for protective relays? Not likely, as these devices continue to expand in capabilities, and undertake additional functions (sequence of event recording, fault recording and analysis, and even acting as a remote terminal unit). To the surprise of many, there is still a substantial amount (perhaps as much as $125 million) being spent annually for electro-mechanical relays nearly 20 years into the digital relay era. The North American leader in protective relay sales to utilities is SEL, while GE Multilin continues to hold a leading share in industrial markets.

Distribution Automation: Today, when we discuss distribution automation, the topic can encompass any and all aspects of a distribution network automation scheme, from the control center-based SCADA and distribution management system on out to the substation, where RTUs, PLCs, power meters, digital relays, bay controllers and a myriad of communicating devices now help operate, monitor and control power flow and measurement in the medium voltage ranges.

Nonetheless, it is beyond the substation fence, reaching further down into the primary and secondary network, where we find reclosers, capacitors, pole top RTUs, automated overhead switches, automated feeders, line reclosers and associated smart controls. These are the new smart devices that comprise the basic building blocks for distribution automation. The objective will be achieved with the ability to detect and isolate faults at the feeder level, and enable ever faster service restoration. With spending approaching $1 billion worldwide, DA implementations will continue to expand over the coming decade, nearing $2.6 billion in annual spending by 2018.


The T&D automation market and the smart grid market will not go away this year, nor will it shrink. When telecommunications infrastructure developments are included, about $5 billion will have been spent in 2008 for global T&D automation programs. When AMI programs are adding into the mix, the total exceeds $7 billion. T&D automation spending growth will likely be subdued, perhaps into 2010. However, the overall market for T&D automation is likely to be propped up to remain at or near current levels of spending for 2009 and into 2010, benefiting from the continued regulatory-driven momentum for AMI/ AMR, renewable portfolio standards and demand response initiatives. By 2011, we should once again see healthier capital expenditure budgets, prompting overall T&D automation spending to reach about $6 billion annually. Over the 2008-2018 periods, we anticipate more than $75 billion in cumulative smart grid expenditures.

Expenditure Outlook

Newton-Evans staff has examined the current outlook for smart grid-related expenditures and has made a serious attempt to avoid double counting potential revenues from all of the components of information systems spending and the emerging smart grid sector of utility investment.

While the enterprise-wide IT portions (blue and red segments) of Figure 1 include all major components of IT (hardware, software, services and staffing), the “pure” smart grid components tend to be primarily in hardware, in our view. Significant overlap with both administrative and operational IT supporting infrastructure is a vital component for all smart grid programs underway at this time.

Between “traditional IT” and the evolving smart grid components, nearly $25 billion will likely be spent this year by the world’s electric utilities. Nearly one-third of all 2009 information technology investments will be “smart grid” related.

By 2013, the total value of the various pie segments is expected to increase substantially, with “smart grid” spending possibly exceeding $12 billion. While this amount is generally understood to be conservative, and somewhat lower than smart grid spending totals forecasted by other firms, we will stand by our forecasts, based on 31 years of research history with electric power industry automation and IT topics.

Some industry sources may include the total value of T&D capital spending in their smart grid outlook.

But that portion of the market is already approaching $100 billion globally, and will likely top $120 billion by 2013. Much of that market would go on whether or not a smart grid is involved. Clearly, all new procurements of infrastructure equipment will be made with an eye to including as much smart content as is available from the manufacturers and integrators.

What we are limiting our definition to is edge investment, the components of the 21st century digital transport and delivery systems being added on or incorporated into the building blocks (power transformers lines, switchgear, etc.) of electric power transmission and delivery.