The Role of Telecommunications Providers in the Smart Grid

Utilities are facing a host of critical issues over the next 10 years. One of the major approaches to dealing with these challenges is for utilities to become much more "intelligent" through the development of Intelligent Utility Enterprises (IUE) and Smart Grids (SG). The IUE/SG will require ubiquitous communications systems throughout utility service territories, especially as automated metering infrastructure (AMI) becomes a reality. Wireless systems, such as the widespread cellular system AT&T and other public carriers already have, will play a major role in enabling these systems.

These communications must be two-way, all the way from the utility to individual homes. The Smart Grid will be a subset of the intelligent utility, enabling utility executives to make wise decisions to deal with the pending issues. Public carriers are currently positioned to support and provide a wide range of communications technologies and services such as WiFi, satellite and cellular, which it is continuing to develop to meet current and future utility needs.

Supply and demand reaching critical concern

Utilities face some formidable mountains in the near future and they must climb these in the crosshairs of regulatory, legislative and public scrutiny. Included are such things as a looming, increasing shortage of electricity which may become more critical as global warming concerns begin to compromise the ability to build large generating plants, especially those fueled by coal.

Utilities also have to contend with the growing political strength of an environmental movement that opposes most forms of generation other than those designated as "green energy." Thus, utilities face a political/legislative/regulatory perfect storm, on the one hand reducing their ability to generate electricity by conventional methods and, on the other, requiring levels of reliability they increasingly are finding it impossible to meet.

The Intelligent Utility Enterprise and Smart Grid, with AMI as a subset of the Smart Grid, as potential, partial solutions

The primary solution proposed to date, which utilities can embrace on their own without waiting for regulatory/legislative/ political clarity, is to use technology like IUEs to become much more effective organizations and to substitute intelligence in lieu of manpower with SGs. The Smart Grid evolution also will enable the general public to take part in solving these problems through demand response. A subset of that evolution will be outage management to ensure that outages are anticipated and, except where required by supply shortages, minimized rapidly and effectively.

The IUE/SG, for the first time, will enable utility executives to see exactly what is happening on the grid in real time, so they can make the critical, day-to-day decisions in an environment of increasingly high prices and diminished supply for electricity.

Wireless To Play A Major Role In Required Ubiquitous Communications

Automating the self-operating, self-healing grid – artificial intelligence

The IUE/SG obviously will require enterprise-wide digital communications to enable the rapid transfer of data between one system and another, all the way from smart meters and other in-home gateways to the boardrooms where critical decisions will be made. Already utilities have embraced service-oriented architecture (SOA), as a means of linking everything together. SOA-enabled systems are easily linked over IP, which is capable of operating over traditional wire and fiber optic communications systems, which many utilities have in place, as well as existing cellular wireless systems. Wireless communications are becoming more helpful in linking disparate systems from the home, through the distribution systems, to substations, control rooms and beyond to the enterprise. The ubiquitous utility communications of the future will integrate a wide range of systems, some of them owned by the utilities and others leased and contracted by various carriers.

The Smart Grid is a subset of the entire utility enterprise and is linked to the boardroom by various increasingly intelligent systems throughout.

Utility leadership will need vital information about the operation of the grid all the way into the home, where distributed generation, net billing, demand response reduction of voltage or current will take place. This communications network must be in real time and must provide information to all of what traditionally were called "back office" systems, but which now must be capable of collating information never before received or considered.

The distribution grid itself will have to become much more automated, self-healing, and self-operating through artificial intelligence. Traditional SCADA (supervisory control and data acquisition) will have to become more capable, and the data it collects will have to be pushed further up into the utility enterprise and to departments that have not previously dealt with real-time data.

The communications infrastructure In the past utilities typically owned much of their communications systems. Most of these systems are aged, and converting them to modern digital systems is difficult and expensive.

Utilities are likely to embrace a wide range of new and existing communications technologies as they grapple with their supply/demand disconnect problem. One of these is IP/MPLS (Internet Protocol/Multi Protocol Label Switching), which already is proven in utility communications networks as well as other industries which require mission critical communications. MPLS is used to make communications more reliable and provide the prioritization to ensure the required latency for specific traffic.

One of the advantages offered by public carriers is that their networks have almost ubiquitous coverage of utility service territories, as well as built-in switching capabilities. They also have been built to communications standards that, while still evolving, help ensure important levels of security and interoperability.

"Cellular network providers are investing billions of dollars in their networks," points out Henry L. Jones II, chief technology officer at SmartSynch, an AMI vendor and author of the article entitled "Want six billion dollars to invest in your AMI network?"

"AT&T alone will be spending 16-17 billion dollars in 2009," Jones notes. "Those investments are spent efficiently in a highly competitive environment to deliver high-speed connectivity anywhere that people live and work. Of course, the primary intent of these funds is to support mobile users with web browsing and e-mail. Communicating with meters is a much simpler proposition, and one can rely on these consumer applications to provide real-world evidence that scalability to system-wide AMI will not be a problem."

Utilities deal in privileged communications with their customers, and their systems are vulnerable to terrorism. As a result, Congress, through the Federal Energy Regulatory Authority (FERC), designated NERC as the agency responsible for ensuring security of all utility facilities, including communications.

As an example of meeting security needs at a major utility, AT&T is providing redundant communications systems over a wireless WAN for a utility’s 950 substations, according to Andrew Hebert, AT&T Area Vice President, Industry Solutions Mobility Practice. This enables the utility to meet critical infrastructure protection standards and "harden" its SCADA and distribution automation systems by providing redundant communications pathways.

SCADA communication, distributed automation, and even devices providing artificial intelligence reporting are possible with today’s modern communications systems. Latency is important in terms of automatic fault reporting and switching. The communications network must provide the delivery-time performance to this support substation automation as identified in IEEE 1646. Some wireless systems now offer latencies in the 125ms range. Some of the newer systems are designed for no more than 50ms latency.

As AMI becomes more widespread, the utility- side control of millions of in-home and in-business devices will have to be controlled and managed. Meter readings must be collected and routed to meter data management systems. While it is possible to feed all this data directly to some central location, it is likely that this data avalanche will be routed through substations for aggregation and handling and transfer to corporate WANs. As the number of meter points grows – and the number readings taken per hour and the number of in-home control signals increases, bandwidth and latency factors will have to be considered carefully.

Public cellular carriers already have interoperability (e.g., you can call someone on a cell phone although they use a different carrier), and it is likely that there will be more standardization of communications systems going forward. A paradigm shift toward national and international communications interoperability already has occurred – for example, with the global GSM standard on which the AT&T network is based. A similar shift in the communications systems utilities use is necessary and likely to come about in the next few years. It no longer is practical for utilities to have to cobble together communications with varying standards for different portions of their service territory, or different functional purposes.