Be a People Person

I have to admit it. Despite all the exciting new technologies out there, I am finding myself to be a people person when it comes to building smarter grids and more intelligent utilities. Granted, technology is rapidly developing and the utility industry is finding itself in the middle of more and more automation. However, people – from linemen to consumers – will remain critical components for delivering information-enabled energy.

In the many conversations I have with utilities and other industry thought leaders, we often start out talking about smart technology, but eventually our chats settle on people. People can ultimately make or break even the most promising technologies – from personnel and consumers adopting and using the technology to executives driving technology investments. So, in a world buzzing with new technologies, it is important to reacquaint ourselves with people. This article traces some of my conversations about what an intelligent utility is, how people fit in – both on the consumer and utility personnel side – and what the utility industry can do to better involve people. As is my usual style, I will serve up these critical subjects with a side of humor and perspectives outside the utility industry. So be prepared to learn more about yoga, Nashville, crystal balls and the telecom industry, too.

What Is An Intelligent Utility ?

Before understanding the importance of people, let’s take a moment to understand where people fit into smart grids and intelligent utilities. Utilities are no longer exempt from change. From economic stimulus plans to carbon controls, to the impending electric vehicle flood, we must face the fact that the utility industry will undergo significant changes in the coming years, months and even minutes. Now, it is not so much a question of what changes will happen, but how – and how well – will the utility industry adapt to these changes?

A frequent answer to this question has been a “smart grid,” but most smart grid discussions inevitably lead to these questions:

  • How do we get to a smart grid?
  • When do we know when we are there?
  • What is a smart grid anyway?

These are not easy questions. Many groups define the smart grid, but how can you tell when a utility has one? Better understanding this challenge requires an unusual, but useful comparison: Nashville and Nirodha – a state of mind in yoga. Let’s say you are traveling to Nashville. You would see landmarks that you could only find in Nashville, such as the Grand Ole Opry, B.B. King’s Blues Club and the Bell- South Tower. Smart grid landmarks, however, are harder to come by. Utilities can install smart meters and other smart sensors on their grid, but having these technologies does not necessarily mean they have arrived at a smart grid. To add to the confusion, other smart grid components, such as demand response, distribution automation and more advanced metering, have already been around for years.

Although such technologies can support a smarter grid, the smart grid is more than just acquiring certain technology landmarks. So, although it is a nice place, you shouldn’t just think Nashville when you think smart grid. Think Nirodha. For those of you who aren’t yoga enthusiasts, Nirodha is a state of mind in yoga in which you become more focused and aware of an object. In the case of a utility, the object is primarily the transmission and distribution network. As a utility becomes more aware and ultimately more knowledgeable about its network, it can make better decisions about its operation.

Furthermore, as a company builds more knowledge about its grid, it develops not only a smarter grid, but also a more intelligent utility. An intelligent utility overlays information on energy that goes beyond the transmission and distribution network all the way from generation to end users, maximizing its reliability, affordability and sustainability. Essentially, utilities are delivering information-enabled energy. And technology is just one piece for delivering this sort of energy. Here is a quick run-down of the key components in an intelligent utility:

  • Process & technology: Utility objectives and their impact on business process change and smart technology deployment;
  • Economic models: The challenges and opportunities of new paradigms. So this is not just the changes involved with upgrading a technology – like a customer information or geographic information system – but the changes from initiatives like electrifying transportation and microgrids that could radically alter utility companies and the roles of generators and consumers;
  • Finance: Investment trends associated with smart technologies;
  • Public policy: The impact of politics on energy – including efforts by regulators and legislators. These groups ultimately set up the framework that determines whether and how intelligent initiatives move forward; and
  • People: The knowledge, skills and abilities required for both the workforce and consumers in an information-enabled environment.

Involving Workforce

The rest of this article will take a little bit closer look at the last component – people. As we move toward information-enabled energy, the utility workforce will undergo some significant changes – from new job titles, to new knowledge, skills and abilities (KSAs), to new people joining utility companies from other industries.

Ryan Cook, vice president of the employment services division at Energy Central, has pointed out that “In today’s utilities, employee KSAs are based primarily on providing electrical power as a product. These KSAs support the rules-based, process-oriented, functionally structured, and cost-focused business needs of today’s utility. In the future, however, there will be a massive paradigm shift from providing just a product to providing customers with customizable services and solutions for their unique energy needs. The result will be a shift toward KSAs that support a more agile, innovative, collaborative, cross-functional, service-oriented utility of the future. Employees will need to deal with constantly evolving technology.”

So, digitizing the grid will change personnel needs. We know that much, but the big unknown is how exactly will those needs change? And where is a good crystal ball when you need one? Since my snow globe wasn’t working, I thought about other industries that have gone through a digital revolution, which brought me to the telecom and cable industry. I learned much from Alan Babcock, president of Broadband Training Associates. As this industry digitized its grid over the last 13 years and began to focus more on services as opposed to products, it saw significant workforce changes – touching everyone from field crews, to executives, to marketing folks – that could happen to the utility industry as well.

Out In the Field

Before digitizing the telecom and cable industry, many field crews were still pencil and paper, and some still are today. But digitization changes weren’t just about figuring out how to use a truck-mounted laptop. The workforce has a whole new job to do today. In particular, they now have to troubleshoot new problems on multiple services in the network and become experts at devices on an end user’s premise.

Before digitization, field crews dealt with one service – like video in the cable industry – but now they have to balance multiple services in the same network, including voice, data and video. The decisions you make for one service will ultimately impact the others. So, with multiple services, it changes how you do regular maintenance, how you troubleshoot networks, and how you take the network down to make repairs. On top of that, technicians may not be able to take down certain parts of the network because of service level agreements with customers.

Besides dealing with multiple services, field crews have to better understand the devices that extend into customer premises – including modems for Internet or set-top boxes for cable. It can be embarrassing for a telecom or cable company when the consumer knows more about consumer devices than the technician.

Back In the Office

Digitizing the network not only changed KSAs for field crews, but has changed things in the back office of telecom and cable companies as well. These changes occurred in the areas of marketing, customer service, planning and IT.

  • Marketing to customers: Digitization provides cable and telecom companies with increased visibility into the customer premises. This is not only helpful with determining whether customers have service, but also understanding their entertainment preferences. These companies now better understand what entertainment you watch and when you watch it. Ultimately, they have a lot of information at their disposal to be able to better market to you. Telecom companies, however, weren’t traditionally in the entertainment industry, so better marketing to consumers required a new group of employees from outside telecom.
  • Customer service: Customer service has changed in many ways with the digitization of the telecom and cable industry. With a smarter grid, the utility industry often focuses on benefits that it will bring to the customer representatives in terms of access to more information, but there are other benefits to consider as well. An interesting twist in the telecom and cable industry is that as the network gets more complex, a customer service agent’s job gets somewhat simpler. Essentially, customer service representatives have to recall fewer technical details about the network than they did before. It is not as important that they understand how the networks function because they have better visibility into the premise and have more intelligent systems to walk them through trouble-shooting problems.
  • Capital and strategic planning: Digitization has changed the planning time horizon and knowledge requirements for telecom and cable executives. They must factor in the dizzying technology advancements in the industry; think about the rapid movement from 2G to 3G to 4G networks and beyond. The five-year plan now has to be the three-year plan. From a planning standpoint, they also need to better understand the networks in order to figure out how to best utilize and benefit from services that are enabled by those networks.
  • Designing and maintaining IT systems: Aside from learning how to design and maintain new technologies and systems, the technology personnel in telecom and the cable industry have learned some important lessons as they digitize the networks. The first is to more carefully consider the usefulness of new technologies. If a new technology comes along, it doesn’t mean that it has to be used. If a new technology does make sense to use, technology personnel need to consider the human aspects involved with making that change, including change management and making sure the technology is ready when people actually begin using it.

Involving Customers

Not only will the intelligent utility impact its own personnel, but it will impact consumers as well. In particular, utilities will have to help consumers to understand the value of changes and get them to participate in intelligent initiatives.

As I am sure many of you have realized from conversations with friends and family, many people do not understand smart grid benefits or even how the grid really works. Although more people are starting to realize the value, a key challenge is how to get consumers to grasp these concepts and support a smarter grid and more intelligent utility. Utilities have to figure out how to make these things real for people – and are finding many ways to do that. As one utility executive pointed out, “A technology center served to convince our community stakeholders and our PUC that this appears to be a worthwhile journey. The awareness to the consumer was a tremendous value. They were able to start thinking of the value of what we’re trying to build rather than what we’re trying to build.”

Many intelligent initiatives, from demand response to real-time pricing, focus on the end user and require some level of consumer effort. Consumer participation is key for success, but utilities are finding it challenging to get participation. Solutions range from more automation in controlling household appliances and HVAC systems to competition between neighbors regarding energy consumption, but there is still much work to be done in this area, depending on consumer demographics.

Be A People Person

It is easy to get caught up in the technology hype, but as the examples above demonstrate, it is important to keep people in the equation when looking at smart initiatives. People play a key role in determining their success or failure. By preparing for the people factor and considering them in smart initiatives, utilities can better ensure the adoption and success of new technologies and processes.

Customer Relationships and the Economy

A little over a year ago, the challenges facing the global energy and utilities market were driving a significant wedge between utilities and their customers. In Western European markets, price increases across gas, electricity and water, combined with increased corporate earnings, left many utilities in the uncomfortable position of being seen as profiteering from customers unable to change suppliers for significant benefit.

Headline-makers had a field day, with gross simplification of the many utilities’ business models. They made claims about “obscene profits,” while citing the “long-suffering” consumer position [1]. Now, more than a year later, gas and electricity prices are falling, but the severity and pace of the wider economic downturn has given no time for utilities to re-position themselves with customers. Brand and relationship-enhancing programs such as smart metering and energy efficiency are still largely in their infancy.

The evolving relationship with the customer base, where customer expectations are resulting in a more participatory, multi-channel engagement, comes at a time when the evolution of smart networks and metering solutions are on the cusp of driving down cost to serve and improving service levels and options. Significant benefits accrue from consumption measurement and management capabilities. Benefits also result from the opportunity to transform the consumer relationship by pushing into new areas such as home device management, more personalised tariffs and easier debt arrangements. The position for utilities, therefore, should be favourable – finally being seen as working on a more participatory relationship with their customers.

For consumers, the consequences of recession include an increased pressure on household spending. In competitive markets, there could be increased churn as the ever-changing “best-buys” attract customers. For utilities, increased churn rates are obviously bad news – the cost of new customer acquisition often wipes out profit associated with consumption by that customer for months, even years. Moreover, while utilities are working on marketing the best deals to acquire and retain customers – and on piloting smart technologies in the home – consumers’ familiarity with new technologies and their allegiance to some brands presents an opportunity for third parties to gain greater hold on the customer relationship.

Take the case of smart metering, for example, where many utilities are engaging upon pilot and larger rollouts. This is an area of innovation that should deliver benefits to both consumers and utilities. The assured business benefits to the utility companies come not only from applying the technology to lower operational costs, but also from enhancing their brand and customer service reputation. To the customer, smart technologies offer consumption details in an understandable form and give the promise of accurate commodity billing.

The risk is that the potentially lucrative relationship between customer and utility is currently damaged to a point where telecommunications providers, retailers or technology companies could step in with attractive, multi-service offerings. That could relegate the utility to simple supply activities, unable to gain a significant hold in home engagement. Certainly, utilities will still witness savings from automated meter reading and improved billing accuracy, but this commoditisation path for the utility company will limit profitable growth and push them further away from customers. Combine this with increased churn, and suddenly the benefits of smart technology deployment could be wiped out for the utility company.

This is not just an issue associated with smart technologies – the entire customer relationship journey with a utility is under threat from non-utility entrants (See Figure 1). Consider the area of consumer marketing and sign-up. Third parties that simply market other companies’ services have already taken a position in this part of the customer journey by providing Internet sites that allow tariff comparison and online switching of suppliers. The brand awareness of the comparison sites has already begun to gain the trust of the customer and the utility brand becomes more remote – the start of an uneasy decline. Additionally, in receiving fees for bringing customers to utilities, these companies thrive on churn – driving up utility cost and driving an even greater gap into the consumer-utility relationship.

Further credence to the challenges comes in the areas around presentation of information to customers. Any utility information channel will demand attention to “stickiness” when using technology such as the Internet for displaying utility bills and consumption data. This information has to be pushed to consumers in an attractive, understandable, and above all, personal format. Does the traditional utility information quality and flow have enough appeal for the average consumer to repeatedly view over time? It could be argued that third parties have the ability to blend in more diverse information to improve stickiness on, for example, handheld devices that give the consumer other benefits such as telephony, traffic and weather updates.

Customer Experience Risks

Traditionally, utilities are seen as relatively “recession proof,” operating on longer- term cycles than financial and retail markets. It is this long-term view that, coupled with an already disjointed customer relationship, poses a significant risk to utilities in the next two years. Customers will react in the competitive markets to the feeling of being “cornered” in an environment where few utilities truly differentiate themselves on customer service, product, tariff or brand. Research suggests that consumers are driving change in the relationship with their utilities, and it is this change that opens up opportunity for others (“Plugging in the Consumer”, IBM Institute for Business Value, 2007).

Reaction may not come soon; rarely do new entrants come into a recessionary market. But the potential for non-utilities to begin exploiting the gap between customer and utility should be cause for concern.

The parallel of these changes and risks was seen in the telco landline market over the last two decades. Several of the big, former-monopoly landline carriers are now perceived as commodity bandwidth providers, with declining core customer numbers and often-difficult regulatory challenges. Newer, more agile companies have stepped into the role of “owning” the consumer relationship and are tailoring the commodities into appealing packages. The underlying services may still come from the former-monopoly, but the customer relationship is now skewing toward the new entrant.

There are strategies that can be proactively deployed, individually or in combination, that improve the resilience of a utility through a recession, and that indeed redraw the client relationship to the point where profitability can increase without attracting the appearance of excess. These strategies resist the potential demise of the utilities to commodity providers, allowing for a value-add future based on their pervasive presence in the home.

The five steps outlined below revolve around the need to focus on the fundamentals, namely customer relationships and cash:

  1. Know Your Customer. Like most companies, utilities can benefit greatly by knowing more about customers. By engaging upon a strategy of ongoing information collection, customer segmentation and profitability analysis, plans can be put in place to detect and react to customer attrition risks. This includes early identification of changes to a customer’s circumstances, such as the ability to settle debt, allowing the utility to work proactively with the customer to address the issue. An active relationship style will show consumers that utilities care and understand, increasing brand loyalty, and hence, lowering the cost to serve.
  2. Free Up Locked Cash. Although recession-resistant in the short-term, identifying organic sources of improved cash flow can be an important source of funding for utilities that need to invest in improving customer relationships and capabilities. Industry benchmarks indicate that most utilities have opportunities to plug leaks in their working capital processes, with the potential of tapping into a significant and accessible source of free cash flow. For example, consider the traditionally neglected, under-invested area of consumer debt. With the economic downturn, debt levels are likely to rise, and, if unchecked, costs and cash flow will be adversely impacted.

    Focus areas for addressing the issue and freeing up locked cash include:

    • Using process management techniques such as activity-based management or Lean Six Sigma to identify opportunities for performance improvement across the billing, collections and credit-management processes;
    • Focusing on developing the skills and operational structures required to better integrate the meter to cash functions; and
    • Optimizing the use of utility-specific debt tools that work with the core systems.

Additionally, gaining insights through precision analytics to better manage debt functions – similar to best practices in banking and telecommunications – needs to be accelerated.

  1. Focus on the Future. Cost cutting is inevitable by many companies in this economic environment. It is important to understand the medium-to-long-term impact of any cuts on the customer relationship to determine if they could hurt profitability by increasing churn and related cost-to-serve metrics. Thus, utilities must achieve a clear understanding of their baseline performance, and have a predictive decision-making capability that delivers accurate, real-time insights so they can be confident that any actions taken will yield the best results.
  2. Innovate. Utilities traditionally work on longer investment cycles than many other businesses. When compared to consumer-facing industries, that can result in consumer perception that they are lacking innovation. Many consumers readily accept new offerings from retailers, telcos and technology firms, and the promise of a smart home will clearly be of strong commercial interest to these individuals. That’s why utilities must act now to show how they are changing, innovating for the future and putting control into the hands of the consumer. Smart metering programs will help the utilities reposition themselves as innovators. The key will be to use technology in a manner that bonds the customer better with the utility.
  3. Agility is King. Longer investment cycles in the utility sector, combined with the massive scale of operations and investment, often restrict a utilities’ ability to be agile in their business models. The long-term future of many utilities will depend upon being able to react to new consumer, technology and regulatory demands within short timescales. Innovation is only innovative for a short time – businesses need to be ready to embrace and exploit innovation with new business models.

Take Action Now

Many will argue that the current utility programs of change, such as core system replacement, smart metering and improving customer offerings, will be enough to sustain and even enhance the customer relationship. The real benefit, however, will be from building upon the change, moving into new products, delivering personalized services and tariffs, and demonstrating an understanding of individual consumer needs.

Still, utilities may struggle to capture discretionary spending from customers ahead of telcos, retailers, financial firms and others. Simply put, action needs to be taken now to prevent the loss of long-term customer relationships. For utilities, doing more of the same in this dynamic and changing market may simply not be good enough!

References:

  1. Multiple references, especially in the British press, including this one from Energy Saving Trust: http://www.energysavingtrust.org.uk/Resources/Daily-news/Gas-and-Electricity/Probe-demanded-into-energy-rip-off/(energysavingtrust)/20792

Empowering the Smart Grid

Trilliant is the leader in delivering intelligent networks that power the smart grid. Trilliant provides hardware, software and service solutions that deliver on the promise of Advanced Metering and Smart Grid to utilities and their customers, including improved energy efficiency, grid reliability, lower operating cost, and integration of renewable energy resources.

Since its founding in 1985, the company has been a leading innovator in the delivery and implementation of advanced metering infrastructure (AMI), demand response and grid management solutions, in addition to installation, program management and meter revenue cycle services. Trilliant is focused on enabling choice for utility companies, ranging from meter, network and IT infrastructures to full or hybrid outsource models.

Solutions

Trilliant provides fully automated, two-way wireless network solutions and software for smart grid applications. The company’s smart grid communications solutions enable utilities to create a more efficient and robust operational infrastructure to:

  • Read meters on demand with five minute or less intervals;
  • Improve cash flow;
  • Improve customer service;
  • Decrease issue resolution time;
  • Verify outages and restoration in real time;
  • Monitor substation equipment;
  • Perform on/off cycle reads;
  • Conduct remote connect/disconnect;
  • Significantly reduce/eliminate energy theft through tamper detection; and
  • Realize accounting/billing improvements.

Trilliant solutions also enable the introduction of services and programs such as:

  • Dynamic demand response; and
  • Time-of-use (TOU), critical peak pricing (CPP) and other special tariffs and related metering.

Solid Customer Base

Trilliant has secured contracts for more than three million meters to be supported by its network solutions and services, encompassing both C&I and residential applications. The company has delivered products and services to more than 200 utility customers, including Duke Energy, E.ON US (Louisville Gas & Electric), Hydro One, Hydro Quebec, Jamaica Public Service Company Ltd., Milton Hydro, Northeast Utilities, PowerStream, Public Service Gas & Electric, San Diego Gas & Electric, Toronto Hydro Electric System Ltd., and Union Gas, among others.

At Your Service

Today’s utility companies are being driven to upgrade their aging transmission and distribution networks in the face of escalating energy generation costs, serious environmental challenges and rising demand for cleaner, distributed generation from both developing and digital economies worldwide.

The current utilities environment requires companies to drive down costs while increasing their ability to monitor and control utility assets. Yet, due to aging infrastructure, many utilities operate without the benefit of real-time usage and distribution loads – while also contending with limited resources for repair and improvement. Even consumers, with climate change on their minds, are demanding that utilities find more innovative ways to help them reduce energy consumption and costs.

One of the key challenges facing the industry is how to take advantage of new technologies to better manage customer service delivery today and into the future. While introducing this new technology, utilities must keep data and networks secure to be in compliance with critical infrastructure protection regulations. The concept of “service management” for the smart grid provides an approach for getting started.

A Smart Grid

A smart grid is created with new solutions that enable new business models. It brings together processes, technology and business partners, empowering utilities with an IP-enabled, continuous sensing network that overlays and connects a utility’s equipment, devices, systems, customers, partners and employees. A smart grid also enables on-demand access to data and information, which is used to better manage, automate and optimize operations and processes throughout the utility.

A utility relies on numerous systems, which reside both within and outside their physical boundaries. Common internal systems include: energy trading systems (ETS), customer information systems (CIS), supervisory control and data acquisition systems (SCADA), outage management systems (OMS), enterprise asset management (EAM); mobile workforce management systems (MWFM), geospatial information systems (GIS) and enterprise resource planning systems (ERP).

These systems are purchased from multiple vendors and often use a variety of protocols to communicate. In addition, utilities must interface with external systems – and often integrate all of them using a point-to-point model and establish connectivity on an as-needed basis. The point-to-point approach can result in numerous complex connections that need to be maintained.

Service Management

The key concept behind service management is the idea of managing assets, networks and systems to provide a “service,” as opposed to simply operating the assets. For example, Rolls Royce Civil Aerospace division uses this concept to sell “pounds of thrust” as a service. Critical to a utility’s operation is the ability to manage all facets of the services being delivered. Also critical to the operation of the smart grid are new solutions in advanced meter management (AMM), network automation and analytics, and EAM, including meter asset management.

A service management platform provides a way for utility companies to manage the services they deliver with their enterprise and information technology assets. It provides a foundation for managing the assets, their configuration, and the interrelationships key to delivering services. It also provides a means of defining workflow for the instantiation and management of the services being delivered. Underlying this platform is a range of tools that can assist in management of the services.

Gathering and analyzing data from advanced meters, network components, distribution devices, and legacy SCADA systems provides a solid foundation for automating service management. When combined with the information available in their asset management systems, utility companies can streamline operations and make more efficient use of valuable resources.

Advanced Reading

AMM centers on a more global view of the informational infrastructure, examining how automatic meter reading (AMR) and advanced metering infrastructure (AMI) integrate with other information systems to provide value-added benefits. It is important to note that for many utilities, AMM is considered to be a “green” initiative since it has the ability to influence customer usage patterns and, therefore, lower peak demand.

The potential for true business transformation exists through AMM, and adopting this solution is the first stage in a utility’s transformation to a more information-powered business model. New smart meters are network addressable, and along with AMM, are core components of the grid. Smart meters and AMM provide the capability to automatically collect usage data in near real time and to transport meter reads at regular intervals or on demand.

AMR/AMIs that aggregate their data in collection servers or concentrators, and expose it through an interface, can be augmented with event management products to monitor the meter’s health and operational status. Many organizations already deploy these solutions for event management within a network’s operations center environments, and for consolidated operations management as a top-level “manager of managers.”

A smart grid includes many devices other than meters, so event management can also be used to monitor the health of the rest of the network and IT equipment in the utility infrastructure. Integrating meter data with operations events gives network operations center operators a much broader view of a utility’s distribution system.

These solutions enable end-to-end data integration, from the meter collection server in a substation to the back-end helpdesk and billing applications. This approach can lead to improved speed and accuracy of data, while leveraging existing equipment and applications.

Network Automation and Analytics

Most utility companies use SCADA systems to collect data from sensors on the energy grid and send events to applications with SCADA interfaces. These systems collect data from substations, power plants and other control centers. They then process the data and allow for control actions to be sent back out. Energy management and distribution management systems typically provide additional features on top of SCADA, targeting either the transmission or distribution grids.

SCADA systems are often distributed on several servers (anywhere from two to 100) connected via a redundant local area network. The SCADA system, in turn, communicates with remote terminal units (RTUs), other devices, and other computer networks. RTUs reside in a substation or power plant, and are hardwired to other devices to bring back meaningful information such as current megawatts, amps, volts, pressure, open/closed or tripped. Distribution business units within a utility company also utilize SCADA systems to track low voltage applications, such as meters and pole drops, compared to the transmission business units’ larger assets, including towers, circuits and switchgear.

To facilitate network automation, IT solutions can help utilities to monitor and analyze data from SCADA systems in real time, monitor the computer network systems used to deploy SCADA systems, and better secure the SCADA network and applications using authentication software. An important element of service management is the use of automation to perform a wide range of actions to improve workfl ow efficiency. Another key ingredient is the use of service level agreements (SLAs) to give a business context for IT, enabling greater accountability to business user needs, and improving a utility’s ability to prioritize and optimize.

A smart grid includes a large number of devices and meters – millions in a large utility – and these are critical to a utility’s operations. A combination of IT solutions can be deployed to manage events from SCADA devices, as well as the IT equipment they rely on.

EAM For Utilities

Historically, many utility companies have managed their assets in silos. However, the emergence of the smart grid and smart meters, challenges of an aging workforce, an ever-demanding regulatory environment, and the availability of common IT architecture standards, are making it critical to standardize on one asset management platform as new requirements to integrate physical assets and IT assets arise (see Figure 1).

Today, utility companies are using EAM to manage work in gas and electric distribution operations, including construction, inspections, leak management, vehicles and facilities. In transmission and substation, EAM software is used for preventative and corrective maintenance and inspections.

EAM also helps track financial assets such as purchasing, depreciation, asset valuation and replacement costs. This solution helps integrate this data with ERP systems, and stores the history of asset testing and maintenance management. It integrates with GIS or other mapping tools to create geographic and spatial views of all distribution and smart grid assets.

Meter asset management is another area of increasing interest, as meters have an asset lifecycle similar to most other assets in a utility. Meter asset management involves tracking the meter from receipt to storeroom, to truck, to final location – as compared to managing the data the meter produces.

Now there is an IT asset management solution with the ability to manage meters as part of the IT network. This solution can be used to provision the meter, track configurations and provide service desk functionality. IT asset management solutions also have the ability to update meter firmware, and easily move and track the location and status of the assets over time in conjunction with a configuration database.

Reducing the number of truck rolls is another key focus area for utility companies. Using a combination of solutions, companies can:

  • Better manage the lifecycles of physical assets such as meters, meter cell relays, and broadband over powerline (BPL) devices to improve preventive maintenance;
  • Reconcile deployed asset information with information collected by meter data management systems;
  • Correlate the knowledge of physical assets with problems experienced with the IT infrastructure to better analyze a problem for root cause; and
  • Establish more efficient business process workflows and strengthen governance across a company.

Utilities are facing many challenges today and taking advantage of new technologies that will help better manage the delivery of service to customers tomorrow. The deployment of the smart grid and related solutions is a significant initiative that will be driving utilities for the next 10 years or more.

The concept of “service management” for the smart grid provides an approach for getting started. But these do not need to be tackled all at once. Utilities should develop a roadmap for the smart grid; each one will depend on specific priorities. But utilities don’t have to go it alone. The smart grid maturity model (SGMM) can enable a utility to develop a roadmap of activities, investments and best practices to ensure success and progress with available resources.

Is Your Mobile Workforce Truly Optimized?

ClickSoftware is the leading provider of mobile workforce management and service optimization solutions that create business value for service operations through higher levels of productivity, customer satisfaction and cost effectiveness. Combining educational, implementation and support services with best practices and its industry leading solutions, ClickSoftware drives service decision making across all levels of the organization.

Our mobile workforce management solution helps utilities empower mobile workers with accurate, real-time information for optimum service and quick on-site decision making. From proactive customer demand forecasting and capacity planning to real-time decision making, incorporating scheduling, mobility and location- based services, ClickSoftware helps service organizations get the most out of their resources.

The IBM/ClickSoftware alliance provides the most comprehensive offering for Mobile Workforce and Asset Management powering the real-time service enterprise. Customers can benefit from maximized workforce productivity and customer satisfaction while controlling, and then minimizing, operational costs.

ClickSoftware provides a flexible, scalable and proven solution that has been deployed at many utility companies around the world. Highlights include the ability to:

  • Automatically update the schedule based on real-time information from the field;
  • Manage crews (parts and people);
  • Cover a wide variety of job types within one product: from short jobs requiring one person to multi-stage jobs requiring a multi-person team over several days or weeks;
  • Balance regulatory, environmental and union compliance;
  • Continuously strive to raise the bar in operational excellence;
  • Incorporate street-level routing into the decision making process; and
  • Plan for the catastrophic events and seasonal variability in field service operations.

The resulting value proposition to the customer is extremely compelling:

  • Typically, optimized scheduling and routing of the mobile workforce generates a 31 percent increase in jobs per day vs. the industry average. (Source: AFSMI survey, 2003)
  • A variety of solutions, ranging from entry level to advanced, that directly address the broad spectrum of pains experienced by service organizations around the world, including optimized scheduling, routing, mobile communications and integration of solutions components – within the service optimization solution itself and also into the CRM/ERP/ EAM back end.
  • An entry level offering with a staged upgrade path toward a fully automated service optimization solution ensures that risk is managed and the most challenging of customer requirements may be met. This “least risk” approach for the customer is delivered by a comprehensive set of IBM business consulting, installation and support services.
  • The industry-proven credibility of ClickSoftware’s ServiceOptimization Suite, combined with IBM’s wireless middleware, software, hardware and business consulting services provides the customer with the most effective platform for managing its field service operations.

ClickSoftware’s customers represent a cross-section of leaders in the utilities, telecommunications, computer and office equipment, home services and capital equipment industries. Over 100 customers around the world have deployed ClickSoftware workforce and service optimization solutions and services to achieve optimal levels of field service.

Thinking Smart

For more than 30 years, Newton- Evans Research Company has been studying the initial development and the embryonic and emergent stages of what the world now collectively terms the smart, or intelligent, grid. In so doing, our team has examined the technology behind the smart grid, the adoption and utilization rates of this technology bundle and the related market segments for more than a dozen or so major components of today’s – and tomorrow’s – intelligent grid.

This white paper contains information on eight of these key components of the smart grid: control systems, smart grid applications, substation automation programs, substation IEDs and devices, advanced metering infrastructure (AMI) and automated meter-reading devices (AMR), protection and control, distribution network automation and telecommunications infrastructure.

Keep in mind that there is a lot more to the smart grid equation than simply installing advanced metering devices and systems. A large AMI program may not even be the correct starting point for hundreds of the world’s utilities. Perhaps it should be a near-term upgrade to control center operations or to electronic device integration of the key substations, or an initial effort to deploy feeder automation or even a complete production and control (P&C) migration to digital relaying technology.

There simply is not a straightforward roadmap to show utilities how to develop a smart grid that is truly in that utility’s unique best interests. Rather, each utility must endeavor to take a step back and evaluate, analyze and plan for its smart grid future based on its (and its various stakeholders’) mission, its role, its financial and human resource limitations and its current investment in modern grid infrastructure and automation systems and equipment.

There are multiple aspects of smart grid development, some of which involve administrative as well as operational components of an electric power utility, and include IT involvement as well as operations and engineering; administrative management of customer information systems (CIS) and geographic information systems (GIS) as well as control center and dispatching operation of distribution and outage management systems (DMS and OMS); substation automation as well as true field automation; third-party services as well as in-house commitment; and of course, smart metering at all levels.

Space Station

I have often compared the evolution of the smart grid to the iterative process of building the international space station: a long-term strategy, a flexible planning environment, responsive changes incorporated into the plan as technology develops and matures, properly phased. What function we might need is really that of a skilled smart grid architect to oversee the increasingly complex duties of an effective systems planning organization within the utility organization.

All of these soon-to-be-interrelated activities need to be viewed in light of the value they add to operational effectiveness and operating efficiencies as well as the effect of their involvement with one another. If the utility has not yet done so, it must strive to adopt a systems-wide approach to problem solving for any one grid-related investment strategy. Decisions made for one aspect of control and automation will have an impact on other components, based on the accumulated 40 years of utility operational insights gained in the digital age.

No utility can today afford to play whack-a-mole with its approach to the intelligent grid and related investments, isolating and solving one problem while inadvertently creating another larger or more costly problem elsewhere because of limited visibility and “quick fix” decision making.

As these smart grid building blocks are put into service, as they become integrated and are made accessible remotely, the overall smart grid necessarily becomes more complex, more communications-centric and more reliant on sensor-based field developments.

In some sense, it reminds one of building the space station. It takes time. The process is iterative. One component follows another, with planning on a system-wide basis. There are no quick solutions. Everything must be very systematically approached from the outset.

Buckets of Spending

We often tackle questions about the buckets of spending for smart grid implementations. This is the trigger for the supply side of the smart grid equation. Suppliers are capable of developing, and will make the required R&D investment in, any aspect of transmission and distribution network product development – if favorable market conditions exist or if market outlooks can be supported with field research. Hundreds of major electric power utilities from around the world have already contributed substantially to our ongoing studies of smart grid components.

In looking at the operational/engineering components of smart grid developments, centering on the physical grid itself (whether a transmission grid, a distribution grid or both), one must include what today comprises P&C, feeder and switch automation, control center-based systems, substation measurement and automation systems, and other significant distribution automation activities.

On the IT and administrative side of smart grid development, one has to include the upgrades that will definitely be required in the near- or mid-term, including CIS, GIS, OMS and wide area communications infrastructure required as the foundation for automatic metering. Based on our internal estimates and those of others, spending for grid automation is pegged for 2008 at or slightly above $1 billion nationwide and will approach $3.5 billion globally. When (if) we add in annual spending for CIS, GIS, meter data management and communications infrastructure developments, several additional billions of dollars become part of the overall smart grid pie.

In a new question included in the 2008 Newton-Evans survey of control center managers, these officials were asked to check the two most important components of near-term (2008-2010) work on the intelligent grid. A total of 136 North American utilities and nearly 100 international utilities provided their comments by indicating their two most important efforts during the planning horizon.

On a summary basis, AMI led in mentions from 48 percent of the group. EMS/ SCADA investments in upgrades, new applications, interfaces et al was next, mentioned by 42 percent of the group. Distribution automation was cited by 35 percent as well.

Spending Outlook

The financial environment and economic outlook do not bode well for many segments of the national and global economies. One question we have continuously been asked well into this year is whether the electric power industry will suffer the fate of other industries and significantly scale back planned spending on T&D automation because of possible revenue erosion given the slowdown and fallout from this year’s difficult industrial and commercial environments.

Let’s first take a summary look at each of the five major components of T&D automation because these all are part and parcel of the operations/engineering view of the smart grid of the future.

Control Systems Outlook: Driven by SCADA-like systems and including energy management systems and distribution management software, this segment of the market is hovering around the $500 million mark on a global scale – excluding the values of turn-key control center projects (engineering, procurement and construction (EPC) of new control center facilities and communications infrastructure). We see neither growth nor erosion in this market for the near-term, with some up-tick in spending for new applications software and better visualization tools to compensate for the “aging” of installed systems. While not a control center-based system, outage management is a closely aligned technology development, and will continue to take hold in the global market. Sales of OMS software and platforms are already approaching the $100 million mark led by the likes of Oracle Utilities, Intergraph and MilSoft.

Substation Automation and Integration Programs: The market for substation IEDs, for new communications implementations and for integration efforts has grown to nearly $500 million. Multiyear programs aimed at upgrading, integrating and automating the existing global base of about a quarter million or so transmission and primary distribution substations have been underway for some time. Some programs have been launched in 2008 that will continue into 2011. We see a continuation of the growth in spending for critical substation A&I programs, albeit 2009 will likely see the slowest rate of growth in several years (less than 3 percent) if the current economic malaise holds up through the year. Continuing emphasis will be on HV transmission substations as the first priority for upgrades and addition of more intelligent electronic devices.

AMI/AMR: This is the lynchpin for the smart grid in the eyes of many industry observers, utility officials and perhaps most importantly, regulators at the state and federal levels of the U.S., Canada, Australia and throughout Western Europe. With nearly 1.5 billion electricity meters installed around the world, and about 93 percent being electro-mechanical, interest in smart metering can also be found in dozens of other countries, including Indonesia, Russia, Honduras, Malaysia, Australia, and Thailand. Another form of smart meters, the prepayment meter, is taking hold in some of the developing nations of the world. The combined resources of Itron, coupled with its Actaris acquisition, make this U.S. firm the global share leader in sales and installations of AMI and AMR systems and meters.

Protection and Control: The global market for protective relays, the foundation for P&C has climbed well above $1.5 billion. Will 2009 see a drop in spending for protective relays? Not likely, as these devices continue to expand in capabilities, and undertake additional functions (sequence of event recording, fault recording and analysis, and even acting as a remote terminal unit). To the surprise of many, there is still a substantial amount (perhaps as much as $125 million) being spent annually for electro-mechanical relays nearly 20 years into the digital relay era. The North American leader in protective relay sales to utilities is SEL, while GE Multilin continues to hold a leading share in industrial markets.

Distribution Automation: Today, when we discuss distribution automation, the topic can encompass any and all aspects of a distribution network automation scheme, from the control center-based SCADA and distribution management system on out to the substation, where RTUs, PLCs, power meters, digital relays, bay controllers and a myriad of communicating devices now help operate, monitor and control power flow and measurement in the medium voltage ranges.

Nonetheless, it is beyond the substation fence, reaching further down into the primary and secondary network, where we find reclosers, capacitors, pole top RTUs, automated overhead switches, automated feeders, line reclosers and associated smart controls. These are the new smart devices that comprise the basic building blocks for distribution automation. The objective will be achieved with the ability to detect and isolate faults at the feeder level, and enable ever faster service restoration. With spending approaching $1 billion worldwide, DA implementations will continue to expand over the coming decade, nearing $2.6 billion in annual spending by 2018.

Summary

The T&D automation market and the smart grid market will not go away this year, nor will it shrink. When telecommunications infrastructure developments are included, about $5 billion will have been spent in 2008 for global T&D automation programs. When AMI programs are adding into the mix, the total exceeds $7 billion. T&D automation spending growth will likely be subdued, perhaps into 2010. However, the overall market for T&D automation is likely to be propped up to remain at or near current levels of spending for 2009 and into 2010, benefiting from the continued regulatory-driven momentum for AMI/ AMR, renewable portfolio standards and demand response initiatives. By 2011, we should once again see healthier capital expenditure budgets, prompting overall T&D automation spending to reach about $6 billion annually. Over the 2008-2018 periods, we anticipate more than $75 billion in cumulative smart grid expenditures.

Expenditure Outlook

Newton-Evans staff has examined the current outlook for smart grid-related expenditures and has made a serious attempt to avoid double counting potential revenues from all of the components of information systems spending and the emerging smart grid sector of utility investment.

While the enterprise-wide IT portions (blue and red segments) of Figure 1 include all major components of IT (hardware, software, services and staffing), the “pure” smart grid components tend to be primarily in hardware, in our view. Significant overlap with both administrative and operational IT supporting infrastructure is a vital component for all smart grid programs underway at this time.

Between “traditional IT” and the evolving smart grid components, nearly $25 billion will likely be spent this year by the world’s electric utilities. Nearly one-third of all 2009 information technology investments will be “smart grid” related.

By 2013, the total value of the various pie segments is expected to increase substantially, with “smart grid” spending possibly exceeding $12 billion. While this amount is generally understood to be conservative, and somewhat lower than smart grid spending totals forecasted by other firms, we will stand by our forecasts, based on 31 years of research history with electric power industry automation and IT topics.

Some industry sources may include the total value of T&D capital spending in their smart grid outlook.

But that portion of the market is already approaching $100 billion globally, and will likely top $120 billion by 2013. Much of that market would go on whether or not a smart grid is involved. Clearly, all new procurements of infrastructure equipment will be made with an eye to including as much smart content as is available from the manufacturers and integrators.

What we are limiting our definition to is edge investment, the components of the 21st century digital transport and delivery systems being added on or incorporated into the building blocks (power transformers lines, switchgear, etc.) of electric power transmission and delivery.

Successful Smart Grid Architecture

The smart grid is progressing well on several fronts. Groups such as the Grid Wise Alliance, events such as Grid Week, and national policy citations such as the American Recovery and Reinvestment Act in the U.S., for example, have all brought more positive attention to this opportunity. The boom in distributed renewable energy and its demands for a bidirectional grid are driving the need forward, as are sentiments for improving consumer control and awareness, giving customers the ability to engage in real-time energy conservation.

On the technology front, advances in wireless and other data communications make wide-area sensor networks more feasible. Distributed computation is certainly more powerful – just consider your iPod! Even architectural issues such as interoperability are now being addressed in their own forums such as Grid Inter-Op. It seems that the recipe for a smart grid is coming together in a way that many who envisioned it would be proud. But to avoid making a gooey mess in the oven, an overall architecture that carefully considers seven key ingredients for success must first exist.

Sources of Data

Utilities have eons of operational data: both real time and archival, both static (such as nodal diagrams within distribution management systems) and dynamic (such as switching orders). There is a wealth of information generated by field crews, and from root-cause analyses of past system failures. Advanced metering infrastructure (AMI) implementations become a fine-grained distribution sensor network feeding communication aggregation systems such as Silver Springs Network’s Utility IQ or Trilliant’s Secure Mesh Network.

These data sources need to be architected to be available to enhance, support and provide context for real-time data coming in from new intelligent electronic devices (IEDs) and other smart grid devices. In an era of renewable energy sources, grid connection controllers become yet another data source. With renewables, micro-scale weather forecasting such as IBM Research’s Deep Thunder can provide valuable context for grid operation.

Data Models

Once data is obtained, in order to preserve its value in a standard format, one can think in terms of an extensible markup language (XML)-oriented database. Modern implementations of these databases have improved performance characteristics, and the International Engineering Consortium (IEC) common information/ generic interface definition (CIM/GID) model, though oriented more to assets than operations, is a front-running candidate for consideration.

Newer entries, such as device language message specification – coincidence-ordered subsets expectation maximization (DLMS-COSEM) for AMI, are also coming into practice. Sometimes, more important than the technical implementation of the data, however, is the model that is employed. A well-designed data model not only makes exchange of data and legacy program adjustments easier, but it can also help the applicability of security and performance requirements. The existence of data models is often a good indicator of an intact governance process, for it facilitates use of the data by multiple applications.

Communications

Customer workshops and blueprinting sessions have shown that one of the most common issues needing to be addressed is the design of the wide-area communication system. Data communications architecture affects data rate performance, the cost of distributed intelligence and the identification of security susceptibilities.

There is no single communications technology that is suitable for all utilities, or even for all operational areas across any individual utility. Rural areas may be served by broadband over powerline (BPL), while urban areas benefit from multi-protocol label switching (MPLS) and purpose- designed mesh networks, enhanced by their proximity to fiber.

In the future, there could be entirely new choices in communications. So, the smart grid architect needs to focus on security, standardized interfaces to accept new technology, enablement of remote configuration of devices to minimize any touching of smart grid devices once installed, and future-proofing the protocols.

The architecture should also be traceable to the business case. This needs to include probable use cases that may not be in the PUC filing, such as AMI now, but smart grid later. Few utilities will be pleased with the idea of a communication network rebuild within five years of deploying an AMI-only network.

Communications architecture must also consider power outages, so battery backup, solar recharging, or other equipment may be required. Even arcane details such as “Will the antenna on a wireless device be the first thing to blow off in a hurricane?” need to be considered.

Security

Certainly, the smart grid’s purpose is to enhance network reliability, not lower its security. But with the advent of North American Reliability Corp. Critical Infrastructure Protection (NERC-CIP), security has risen to become a prime consideration, usually addressed in phase one of the smart grid architecture.

Unlike the data center, field-deployed security has many new situations and challenges. There is security at the substation – for example, who can access what networks, and when, within the control center. At the other end, security of the meter data in a proprietary AMI system needs to be addressed so that only authorized applications and personnel can access the data.

Service oriented architecture (SOA) appliances are network devices to enable integration and help provide security at the Web services message level. These typically include an integration device, which streamlines SOA infrastructures; an XML accelerator, which offloads XML processing; and an XML security gateway, which helps provide message-level, Web-services security. A security gateway helps to ensure that only authorized applications are allowed to access the data, whether an IP meter or an IED. SOA appliance security features complement the SOA security management capabilities of software.

Proper architectures could address dynamic, trusted virtual security domains, and be combined not only with intrusion protection systems, but anomaly detection systems. If hackers can introduce viruses in data (such as malformed video images that leverage faults in media players), then similar concerns should be under discussion with smart grid data. Is messing with 300 MegaWatts (MW) of demand response much different than cyber attacking a 300 MW generator?

Analytics

A smart grid cynic might say, “Who is going to look at all of this new data?” That is where analytics supports the processing, interpretation and correlation of the flood of new grid observations. One part of the analytics would be performed by existing applications. This is where data models and integration play a key role. Another part of the analytics dimension is with new applications and the ability of engineers to use a workbench to create their customized analytics dashboard in a self-service model.

Many utilities have power system engineers in a back office using spreadsheets; part of the smart grid concept is that all data is available to the community to use modern tools to analyze and predict grid operation. Analytics may need a dedicated data bus, separate from an enterprise service bus (ESB) or enterprise SOA bus, to meet the timeliness and quality of service to support operational analytics.

A two-tier or three-tier (if one considers the substations) bus is an architectural approach to segregate data by speed and still maintain interconnections that support a holistic view of the operation. Connections to standard industry tools such as ABB’s NEPLAN® or Siemens Power Technologies International PSS®E, or general tools such as MatLab, should be considered at design time, rather than as an additional expense commitment after smart grid commissioning.

Integration

Once data is sensed, securely communicated, modeled and analyzed, the results need to be applied for business optimization. This means new smart grid data gets integrated with existing applications, and metadata locked in legacy systems is made available to provide meaningful context.

This is typically accomplished by enabling systems as services per the classic SOA model. However, issues of common data formats, data integrity and name services must be considered. Data integrity includes verification and cross-correlation of information for validity, and designation of authoritative sources and specific personnel who own the data.

Name services addresses the common issue of an asset – whether transformer or truck – having multiple names in multiple systems. An example might be a substation that has a location name, such as Walden; a geographic information system (GIS) identifier such as latitude and longitude; a map name such as nearest cross streets; a capital asset number in the financial system; a logical name in the distribution system topology; an abbreviated logical name to fit in the distribution management system graphical user interface (DMS GUI); and an IP address for the main network router in the substation.

Different applications may know new data by association with one of those names, and that name may need translation to be used in a query with another application. While rewriting the applications to a common model may seem appealing, it may very well send a CIO into shock. While the smart grid should help propagate intelligence throughout the utility, this doesn’t necessarily mean to replace everything, but it should “information-enable” everything.

Interoperability is essential at both a service level and at the application level. Some vendors focus more at the service, but consider, for example, making a cell phone call from the U.S. to France – your voice data may well be code division multiple access (CDMA) in the U.S., travel by microwave and fiber along its path, and emerge in France in a global system for mobile (GSM) environment, yet your speech, the “application level data,” is retained transparently (though technology does not yet address accents!).

Hardware

The world of computerized solutions does not speak to software alone. For instance, AMI storage consolidation addresses the concern that the volume of data coming into the utility will be increasing exponentially. As more meter data can be read in an on-demand fashion, data analytics will be employed to properly understand it all, requiring a sound hardware architecture to manage, back-up and feed the data into the analytics engines. In particular, storage is needed in the head-end systems and the meter-data management systems (MDMS).

Head-end systems pull data from the meters to provide management functionality while the MDMS collects data from head-end systems and validates it. Then the data can be used by billing and other business applications. Data in both the head-end systems and the master copy of the MDMS is replicated into multiple copies for full back up and disaster recovery. For MDMS, the master database that stores all the aggregated data is replicated for other business applications, such as customer portal or data analytics, so that the master copy of the data is not tampered with.

Since smart grid is essentially performing in real time, and the electricity business is non-stop, one must think of hardware and software solutions as needing to be fail-safe with automated redundancy. The AMI data especially needs to be reliable. The key factors then become: operating system stability; hardware true memory access speed and range; server and power supply reliability; file system redundancy such as a JFS; and techniques such as FlashCopy to provide a point-in-time copy of a logical drive.

Flash Copy can be useful in speeding up database hot backups and restore. VolumeCopy can extend the replication functionality by providing the ability to copy contents of one volume to another. Enhanced remote mirroring (Global Mirror, Global Copy and Metro Mirror) can provide the ability to mirror data from one storage system to another, over extended distances.

Conclusion

Those are seven key ingredients for designing or evaluating a recipe for success with regard to implementing the smart grid at your utility. Addressing these dimensions will help achieve a solid foundation for a comprehensive smart grid computing system architecture.

PHEVs Are on a Roll

The electric vehicle first made its appearance about a century ago, but it is only in recent years – months, to be more precise – that it has achieved breakthrough status as, quite possibly, the single-most important technological development having a positive impact on society today.

Climate change, over-dependence on fossil fuels, and the current economic crisis have combined to impact the automobile sector to a degree unforeseen, forcing technological innovation to direct its urgent attention toward the development of electric vehicles as an alternative means of transport, and a substitute for internal combustion engines. Many countries are supporting the approach in their political, energy and industrial planning directed toward the introduction of this type of vehicle. For example, the U.S. has a target of 1 million Plug-in Hybrid Electric Vehicles (PHEV) in operation by 2015. Spain expects to achieve the same number by 2014.

It is certainly true that there exist pressures capable of driving the introduction of the PHEV forward, but technological advances are the factors that underpin and give coherence to its development. There are several progressive improvements being made in technology, materials, and power generation and supply, which will support the deployment and use of electric vehicles in the coming years. They include: advances in battery manufacture and electronics (particularly in terms of power); the development of new communication protocols; ever more efficient and flexible information technologies; the growth of renewable energy sources in the electrical energy generation mix; and the concept of smart grids focused on more efficient electricity distribution. All of these improvements are underscored by a much greater degree of passion and personal involvement by the end-user.

Stakeholders and Utilities

With technology as the underlying catalyst, the scenario for electric vehicle use will include the impact and involvement of various stakeholders. This consists of: society itself, government and municipal entities, regulators, universities and research institutions, vehicle manufacturers, the ancillary automobile industry and its technological partners, battery manufacturers, the manufacturers of components, electrical and electronics systems, infrastructure suppliers, companies dedicated to mediation, billing and payment methods, ICT (Information and Communication Technology) companies, and of course, utilities.

If the electric vehicle is to become a genuinely alternative means of transportation, then this will depend on the involvement of, and interrelationship between, the above groups. One example of this is the formalizing of various agreements between certain stakeholders at both the national and international level (for example, Saab, Volvo, Wattenfall and ETC Battery in Sweden; Renault, PSA Peugeot Citroën, Toyota and EDF in France; and Iberdrola and General Motors at a global level) and the establishment of consortiums such as EDISON (Electric Vehicles in a Distributed and Integrated Market using Sustainable Energy and Open Networks) in Denmark.

If there is one dimension, however, which will be impacted most throughout the whole of the value chain, it is the electrical one. From power generation to retail, the introduction of this vehicle will require changes in current business models, and foreseeably, in utilities operational models. The short-term aim is to provide electrical energy for use in these vehicles in a more reliable and efficient way.

Battery Charging Impact

Given that charging could be the action having the greatest impact on the electrical sector, there are various alternatives for affecting this. These include:

  • Substitution. This involves a rapid exchange of vehicles and/or batteries, and the subsequent charging of both in an offline mode. It would require sharing of cars (vehicle usage and substitution) and battery charging stations for quick and automated battery exchange.
  • Direct Charging. This includes regular charging points situated in car parks, shopping centers and residences, and providing battery recharge while the vehicle is parked. There also need to be fast-charging points that could quickly charge a battery in 10 to 15 minutes.

To examine the advantages and disadvantages of the above methods, it helps to note the various pilot projects and research programs underway at both the conceptual and demonstration stages. These indicate the possibility of a coexistence scenario. Offline charging could be the least invasive method given the current system of fuel distribution. A network of “electricity stations” (as opposed to petrol stations) could provide a dedicated system of energy generation in a given location. As for direct charging, given the itinerant nature of user demand and his or her expected freedom to choose a particular charging method or location, this introduces an element of greater uncertainty, and impact on the electricity grid, requiring a system that better adapts to the lifestyle of the user.

Direct Charging and Its Impact on the Electricity Grid

Direct charging depends on various factors – notably battery characteristics (directly related to vehicle performance) and the range of time spans chosen to carry out the recharge. Associated with these are other variables: charging voltage, mode (DC, single-phase AC, and three-phase AC) and the characteristics of the charging systems employed: technology, components and their location, connectors, insulation, and the power and control electronics. All of these variables will influence the charging times, and will vary according to the power input (more power, less time) as shown in Figure 1. Therefore, depending on the kind of recharging, there will be an impact not only on the characteristics of the individual charging points but also on the supporting system.

Using extended range electrical vehicles (EREV) such as the Chevrolet Volt or Opel/Vauxhall Ampera as an example, it is estimated that annual home energy consumption from vehicle charging could be around 20 percent of the total, although some studies suggest this amount may be twice as much, based on the customer profile.

Based on the charging power input – and this is, of course, related to the methodology employed – it would be possible to fully recharge an EREV battery in about three hours. A fully charged battery would enable operation solely on electrical power for approximately 40 miles, a distance representing about 80 percent of daily car journeys based on the current averages. For a scenario like this it would be possible to use a charging method of about 4 kilowatt/220 volts.

If we analyze the impact in terms of energy supply and power capacity, there appears to be no medium-term problems in supporting these chargings, according to the data above. This is, however, a matter which depends on each individual country and also on the power transmission interconnections between them. In terms of the instantaneous power available, the charging method will have a greater or lesser impact, particularly on the distribution assets, depending on how it is carried out. Figure 2 shows how the power varies according to the charging method and the time of day when it is in use, taking into account the daily energy demand curve. We can, therefore, identify different scenarios from the most favourable (slow charging at off-peak times) to the most unfavourable (fast charging at peak times). With the latter we may find ourselves with distribution assets (e.g., transformers) incapable of supporting the heavy load of instant energy consumption.

It is necessary to link electric vehicle charging to the daily energy demand curve and instantaneous power availability in such a way that charging impacts the system as little as possible and maximizes the available energy resources. Ideally, there would be a move toward slow charging during off-peak periods. Furthermore, this kind of charging would not impact users as 90 percent of vehicles are not used between 11 a.m. and 6 p.m. Operating under such conditions would also permit the use of excess wind-generated power during off-peak times, enabling a clean locomotion device such as the PHEV to also use renewable (clean) energy as its primary source.

This all sounds reasonable, but the itinerant nature of roaming vehicle demand, together with relatively limited battery life, means that other variables such as home charging versus remote charging with the ability to measure consumption and set tariffs must be taken into account. What will be the charging price? How will charging be carried out when the vehicle is not parked at home, nor at its usual charging centre? What method will be used for making payments? Who will be involved in developing all this infrastructure and how will it all interrelate?

Smart Charging

One system providing answers to these questions is smart charging. Based on the concept, purpose and architecture of the smart grid, such technology can optimise charging in the most favorable way by considering several parameters. These may include: the current state of the electrical system; the battery charging level; tariff modes and associated demand-response models which may be applied (such as time of use, or TOU, tariffs); and the ability to use energy distributed and stored locally through an energy management system.

Smart charging would be capable of deciding when to charge in relation to different variables (for example, price and energy availability), and which energy sources to use (in-home energy storage, local and decoupled energy supply, plug-in to the distribution grid, etc.) Supporting the vehicle-to-grid (V2G) paradigm would enable managing and deciding not only when and how to best charge the vehicle, but also when to store energy in the vehicle battery that can later be returned to the grid for use in a local mode as a distributed energy source.

For all of this to be effective, a power and control electronics system (in both local and global mode), supported by information systems to manage those issues, is required. This will enable the optimal charging process (avoiding peak times, and doing fast charging only when necessary) and an intelligent measuring and tariff system. The latter may be either managed by utilities through advanced meter management (AMM), or virtually through energy tariffs and physical economic transactions. Such systems should allow for the interaction of various agents: end users, utilities, energy service companies (ESCO), infrastructure providers, banks and other method-of-payment companies.

Conclusion

Although there are still many unresolved issues around the introduction of electric vehicles (for example, incentives, carbon caps, tax collection, readiness of systems and business processes), the challenge associated with this means of locomotion and its effect on current business systems and models is a fascinating one. From an electrical viewpoint, there would not appear to be any significant impact on energy management in the medium term, but perhaps more so in terms of power requirements. As an example, some regions have adjusted to the massive introduction of air conditioning systems over recent years. While we are reassured as to the viability of electric vehicles, we are also alert to the possible significant impact of widespread vehicle charging, above all when considering a fast charging scenario.

The special characteristics of battery charging and its itinerant nature, the predicted volumes of power outlet and energy, the current state of tariff systems, the available technology, and the vision and state of deployment of smart grids and AMM, all add up to suggest a smart charging type of system would be the best option – though certainly complex to implement. Given the prominent role that information and communication technologies will play in such a system, it will be necessary to achieve consensus among various stakeholders over methodologies to be used, standards development, and in establishing a regulatory framework capable of supporting all the mechanisms and systems to be introduced.

We have already made good progress, and the electric vehicle could become an example that drives change in other business and technology models. It may well stimulate more rapid development of smart grids, encourage the creation of more efficient energy services and technologies, and lead to greater development and use of renewable energy sources, including a generation and distribution scenario based on the V2G paradigm.

It also may open the door to new businesses and stakeholders as well (such as the ESCOs) to introduce more dynamic, interactive demand response programs and broaden the function of battery storage as a provider of spinning reserves and ancillary services. These are all aspects for which it is now necessary to establish a basis for implementation and a short-term viability plan that will allow for the use of this technology with the aim of reaping its recognized benefits. Are we ready to step up to the challenge?

The Smart Grid Gets Real

Utilities around the world are facing a future that demands technology and service to better measure, manage and control distributed resources. Sensus has anticipated that future with real-world solutions that are already at work in millions of households today. As a leading provider of advanced metering and related communications technologies to utilities worldwide, Sensus has been aggressively pushing the boundaries of utility management. Our innovative communication systems enable utilities to intelligently utilize their resources with unprecedented efficiency.

FlexNet Smart Grid Solution

FlexNet is the electric utility industry’s most powerful AMI solution. It meets AMI requirements of today; ubiquity, redundancy, security and demand response, and is smart grid ready. FlexNet is simple; its lean architecture uses a powerful, industry-leading two Watts of radio power to transmit information that maximizes range and minimizes operational costs with low infrastructure requirements. FlexNet insures sustainability, protecting the utility infrastructure investment and uninterrupted delivery.

Every FlexNet endpoint is equipped with the ability to accept downloadable revised code; modulations, protocols, frequency of operation, even data rate can be fully upgraded as future requirements and features are developed. Sensus FlexNet further mitigates risk by using APA™ (All Paths Always) technology; this ultimate form of self-healing ensures critical messages are delivered without re-routing delay.

iCon Smart Meters

The iCon line of solid state smart meters integrates seamlessly with the FlexNet AMI solution. Communication vendors and metrology engineers nationwide consistently find that the advanced family of Sensus meters provides complete functionality, superior reliability, flexible integration capability, industry standards compatibility, and economical value. The modular mechanical, electrical, and software designs, in combination with the advanced sensing capability, predictably deliver the speed, accuracy, and reliability required to meet today’s electric utility needs. With an unsurpassed accuracy exceeding ANSI C12.20 (Class 0.2), the iCon Meter by Sensus is built with a backbone of reliability and precision.

Online Transient Stability Controls

For the last few decades the growth of the world’s population and its corresponding increased demand for electrical energy has created a huge increase in the supply of electrical power. However, for logistical, environmental, political and social reasons, this power generation is rarely near its consumers, necessitating the growth of very large and complex transmission networks. The addition of variable wind energy in remote locations is only exacerbating the situation. In addition the transmission grid capacity has not kept pace with either generation capacity or consumption while at the same time being extremely vulnerable to potential large-scale outages due to outdated operational capabilities.

For example, today if a fault is detected in the transmission system, the only course is to shed both load and generation. This is often done without consideration for real-time consequences or alternative analysis. If not done rapidly, it can result in a widespread, cascading power system blackout. While it is necessary to remove factors that might lead to a large-scale blackout, restriction of power flow or other countermeasures against such a failure, may only achieve this by sacrificing economical operation. Thus, the flexible and economical operation of an electric power system may often be in conflict with the requirement for improved supply reliability and system stability.

Limits of Off-line Approaches

One approach to solving this problem involves stabilization systems that have been deployed for preventing generator step-out by controlling the generator acceleration through power shedding, in which some of the generators are shut off at the time of a power system fault.

In 1975, an off-line special protection system (SPS) for power flow monitoring was introduced to achieve the transient stability of the trunk power system and power source system after a network expansion in Japan. This system was initially of the type for which settings were determined in advance by manual calculations using transient stability simulation programs assuming many contingencies on typical power flow patterns.

This type of off-line solution has the following problems:

  • Planning, design, programming, implementation and operational tasks are laborious. A vast number of simulations are required to determine the setting tables and required countermeasures, such as generator shedding, whenever transmission lines are constructed;
  • It is not well suited to variable generations sources such as wind or photovoltaic farms;
  • It is not suitable for reuse and replication, incurring high maintenance costs; and
  • Excessive travel time and related labor expense is required for the engineer and field staff to maintain the units at numerous sites.

By contrast, an online TSC solution employs various sensors that are placed throughout the transmission network, substations and generation sources. These sensors are connected to regional computer systems via high speed communications to monitor, detect and execute contingencies on transients that may affect system stability. These systems in turn are connected to centralized computers which monitor the network of distributed computers, building and distributing contingencies based on historical and recent information. If a transient event occurs, the entire ecosystem responds within 150 ms to detect, analyze, determine the correct course of action, and execute the appropriate set of contingencies in order to preserve the stability of the power network.

In recent years, high performance computational servers have been developed and their costs have been reduced enough to use many of them in parallel and/or in a distributed computing architecture. This results in a system that not only provides a benefit in greatly increasing the availability and reliability of the power system, but in fact, can best optimize the throughput of the grid. Thus not only has system reliability improved or remained stable, but the network efficiency itself has increased without a significant investment in new transmission lines. This has resulted in more throughput within the transmission grid, without building new transmission lines.

Solution and Elements

In 1995, for the first time ever, an online TSC system was developed and introduced in Japan. This solution provided a system stabilization procedure required by the construction of the new 500kV trunk networks of Chubu Electric Power Co. (CEPCO) [1-4]. Figure 1 shows the configuration of the online TSC system. This system introduced a pre-processing online calculation in the TSC-P (parent) besides a fast, post-event control executed by the combination of TSC-C (child) and TSC-T (terminal). This online TSC system can be considered an example of a self-healing solution of a smart grid. As a result of periodic simulations using the online data in TSC-P, operators of energy management systems/supervisory control and data acquisition (EMS/ SCADA) are constantly made aware of stability margins for current power system situations.

Using the same online data, periodic calculations performed in the TSC-P can reflect power network situations and the proper countermeasures to mitigate transient system events. The TSC-P simulates transient stability dynamics on about 100 contingencies of the power systems for 500 kV, 275 kV and 154 kV transmission networks. The setting tables for required countermeasures, such as generator shedding, are periodically sent to the TSC-Cs located at main substations. The TSC-Ts located at generation stations, shed the generators when the actual fault occurs. The actual generator shedding by the combination of TSC-Cs and TSC-Ts is completed within 150 ms after the fault to maintain the system’s stability.

Customer Experiences and Benefits

Figure 2 shows the locations of online TSC systems and their coverage areas in CEPCO’s power network. There are two online TSC systems currently operating; namely, the trunk power TSC system, to protect the 500 kV trunk power system introduced in 1995, and the power source TSC system to protect the 154 kV to 275 kV power source systems around the generation stations.

Actual performance data have shown some significant benefits:

  • Total transfer capability (TTC) is improved through elimination of transient stability limitations. TTC is decided by the minimum value of limitations given by not only thermal limit of transmission lines but transient stability, frequency stability, and voltage stability. Transient stability limits often determines the TTC in the case of long transmission lines from generation plants. CEPCO was able to introduce high-efficiency, combined-cycle power plants without constructing new transmission lines. TTC was increased from 1,500 MW to 3,500 MW by introducing the on-line TSC solution.
  • Power shedding is optimized. Not only is the power flow of the transmission line on which a fault occurs assessed, but the effects of other power flows surrounding the fault point are included in the analysis to decide the precise stability limit. The online TSC system can also reflect the constraints and priorities of each generator to be shed. To ensure a smooth restoration after the fault, restart time of shut off generators, for instance, can also be included.
  • When constructing new transmission lines, numerous off-line studies assuming various power flow patterns are required to support off-line SPS. After introduction of the online TSC system, new construction of transmission lines was more efficient by changing the equipment database for the simulation in the TSC-P.

In 2003, this CEPCO system received the 44th Annual Edison Award from the Edison Electric Institute (EEI), recognizing CEPCO’s achievement with the world’s first application of this type of system, and the contribution of the system to efficient power management.

Today, benefits continue to accrue. A new TSC-P, which adopts the latest high-performance computation servers, is now under construction for operation in 2009 [3]. The new system will shorten the calculation interval from every five minutes to every 30 seconds in order to reflect power system situations as precisely as possible. This interval was determined by the analysis of various stability situations recorded by the current TSC-P over more than 10 years of operation.

Additionally, although the current TSC-P uses the same online data as used by EMS/ SCADA, it can control emergency actions against small signal instability by receiving phasor measurement unit (PMU) data to detect divergences of phasor angles and voltages among the main substations.

Summary

The online TSC system is expected to realize optimum stabilization control of recent complicated power system conditions by obtaining power system information online and carrying out stability calculations at specific intervals. The online TSC will thus help utilities achieve better returns on investment in new or renovated transmission lines, reducing outage time and enabling a more efficient smart grid.

References

  1. Ota, Kitayama, Ito, Fukushima, Omata, Morita and Y. Kokai, “Development of Transient Stability Control System (TSC System) Based on Online Stability Calculation”, IEEE Trans. on Power System, Vol. 11, No. 3, pp. 1463-1472, August 1996.
  2. Koaizawa, Nakane, Omata and Y. Kokai, “Acutual Operating Experience of Online Transient Stability Control System (TSC System), IEEE PES Winter Meeting, 2000, Vol. 1, pp 84-89.
  3. Takeuchi, Niwa, Nakane and T. Miura
    “Performance Evaluation of the Online Transient Stability Control System (Online TSC System)”, IEEE PES General Meeting , June 2006.
  4. Takeuchi, Sato, Nishiiri, Kajihara, Kokai and M. Yatsu, “Development of New Technologies and Functions for the Online TSC System”, IEEE PES General Meeting , June 2006.