The Distributed Utility of the (Near) Future

The next 10 to 15 years will see major changes – what future historians might even call upheavals – in the way electricity is distributed to businesses and households throughout the United States. The exact nature of these changes and their long-term effect on the security and economic well-being of this country are difficult to predict. However, a consensus already exists among those working within the industry – as well as with politicians and regulators, economists, environmentalists and (increasingly) the general public – that these fundamental changes are inevitable.

This need for change is in evidence everywhere across the country. The February 26, 2008, temporary blackout in Florida served as just another warning that the existing paradigm is failing. Although at the time of this writing, the exact cause of that blackout had not yet been identified, the incident serves as a reminder that the nationwide interconnected transmission and distribution grid is no longer stable. To wit: disturbances in Florida on that Tuesday were noted and measured as far away as New York.

A FAILING MODEL

The existing paradigm of nationwide grid interconnection brought about primarily by the deregulation movement of the late 1990s emphasizes that electricity be generated at large plants in various parts of the country and then distributed nationwide. There are two reasons this paradigm is failing. First, the transmission and distribution system wasn’t designed to serve as a nationwide grid; it is aged and only marginally stable. Second, political, regulatory and social forces are making the construction of large generating plants increasingly difficult, expensive and eventually unfeasible.

The previous historic paradigm made each utility primarily responsible for generation, transmission and distribution in its own service territory; this had the benefit of localizing disturbances and fragmenting responsibility and expense. With loose interconnections to other states and regions, a disturbance in one area or a lack of resources in a different one had considerably less effect on other parts of the country, or even other parts of service territories.

For better or worse, we now have a nationwide interconnected grid – albeit one that was neither designed for the purpose nor serves it adequately. Although the existing grid can be improved, the expense would be massive, and probably cost prohibitive. Knowledgeable industry insiders, in fact, calculate that it would cost more than the current market value of all U.S. utilities combined to modernize the nationwide grid and replace its large generating facilities over the next 30 years. Obviously, the paradigm is going to have to change.

While the need for dramatic change is clear, though, what’s less clear is the direction that change should take. And time is running short: North American Electric Reliability Corp. (NERC) projects serious shortages in the nation’s electric supply by 2016. Utilities recognize the need; they just aren’t sure which way to jump first.

With a number of tipping points already reached (and the changes they describe continuing to accelerate), it’s easy to envision the scenario that’s about to unfold. Consider the following:

  • The United States stands to face a serious supply/demand disconnect within 10 years. Unless something dramatic happens, there simply won’t be nearly enough electricity to go around. Already, some parts of the country are feeling the pinch. And regulatory and legislative uncertainty (especially around global warming and environmental issues) makes it difficult for utilities to know what to do. Building new generation of any type other than “green energy” is extremely difficult, and green energy – which currently meets less than 3 percent of U.S. supply needs – cannot close the growing gap between supply and demand being projected by NERC. Specifically, green energy will not be able to replace the 50 percent of U.S. electricity currently supplied by coal within that 10-year time frame.
  • Fuel prices continue to escalate, and the reliability of the fuel supply continues to decline. In addition, increasing restrictions are being placed on fuel selection, especially coal.
  • A generation of utility workers is nearing retirement, and finding adequate replacements among the younger generation is proving increasingly difficult.
  • It’s extremely difficult to site new transmission – needed to deal with supply-and-demand issues. Even new Federal Energy Regulatory Commission (FERC) authority to authorize corridors is being met with virulent opposition.

SMART GRID NO SILVER BULLET

Distributed generation – including many smaller supply sources to replace fewer large ones – and “smart grids” (designed to enhance delivery efficiency and effectiveness) have been posited as solutions. However, although such solutions offer potential, they’re far from being in place today. At best, smart grids and smarter consumers are only part of the answer. They will help reduce demand (though probably not enough to make up the generation shortfall), and they’re both still evolving as concepts. While most utility executives recognize the problems, they continue to be uncertain about the solutions and have a considerable distance to go before implementing any of them, according to recent Sierra Energy Group surveys.

According to these surveys, more than 90 percent of utility executives now feel that the intelligent utility enterprise and smart grid (IUE/SG) – that is, the distributed utility – represents an inevitable part of their future (Figure 1). This finding was true of all utility types supplying electricity.

Although utility executives understand the problem and the IUE/SG approach to solving part of it, they’re behind in planning on exactly how to implement the various pieces. That “planning lag” for the vision can be seen in Figure 2.

At least some fault for the planning lag can be attributed to forces outside the utilities. While politicians and regulators have been emphasizing conservation and demand response, they’ve failed to produce guidelines for how this will work. And although a number of states have established mandatory green power percentages, Congress failed to do the same in an Energy Policy Act (EPACT) adopted in December 2007. While the EPACT of 2005 “urged” regulators to “urge” utilities to install smart meters, it didn’t make their installation a requirement, and thus regulators have moved at different speeds in different parts of the country on this urging.

Although we’ve entered a new era, utilities remain burdened with the internal problems caused by the “silo mentality” left over from generations of tight regulatory control. Today, real-time data is often still jealously guarded in engineering and operations silos. However, a key component in the development of intelligent utilities will be pushing both real-time and back-office data onto dashboards so that executives can make real-time decisions.

Getting from where utilities were (and in many respects still are) in the last century to where they need to be by 2018 isn’t a problem that can be solved overnight. And, in fact, utilities have historically evolved slowly. Today’s executives know that technological evolution in the utility industry needs to accelerate rapidly, but they’re uncertain where to start. For example, should you install an advanced metering structure (AMI) as rapidly as possible? Do you emphasize automating the grid and adding artificial intelligence? Do you continue to build out mobile systems to push data (and more detailed, simpler instructions) to field crews who soon will be much younger and less experienced? Do you rush into home automation? Do you build windmills and solar farms? Utilities have neither the financial nor human resources to do everything at once.

THE DEMAND FOR AMI

Its name implies that a smart grid will become increasingly self-operating and self-healing – and indeed much of the technology for this type of intelligent network grid has been developed. It has not, however, been widely deployed. Utilities, in fact, have been working on basic distribution automation (DA) – the capability to operate the grid remotely – for a number of years.

As mentioned earlier, most theorists – not to mention politicians and regulators – feel that utilities will have to enable AMI and demand response/home automation if they’re to encourage energy conservation in an impending era of short supplies. While advanced meter reading (AMR) has been around for a long time, its penetration remains relatively small in the utilities industry – especially in the case of advanced AMI meters for enabling demand response: According to figures released by Sierra Energy Group and Newton-Evans Research Co., only 8 to 10 percent of this country’s utilities were using AMI meters by 2008.

That said, the push for AMI on the part of both EPACT 2005 and regulators is having an obvious effect. Numerous utilities (including companies like Entergy and Southern Co.) that previously refused to consider AMR now have AMI projects in progress. However, even though an anticipated building boom in AMI is finally underway, there’s still much to be done to enable the demand response that will be desperately needed by 2016.

THE AUTOMATED HOME

The final area we can expect the IUE/SG concept to envelope comes at the residential level. With residential home automation in place, utilities will be able to control usage directly – by adjusting thermostats or compressor cycling, or via other techniques. Again, the technology for this has existed for some time; however, there are very few installations nationwide. A number of experiments were conducted with home automation in the early- to mid-1990s, with some subdivisions even being built under the mantra of “demand-side management.”

Demand response – the term currently in vogue with politicians – may be considered more politically correct, but the net result is the same. Home automation will enable regulators, through utilities, to ration usage. Although politicians avoid using the word rationing, if global warming concerns continue to seriously impact utilities’ ability to access adequate generation, rationing will be the result – making direct load control at the residential level one of the most problematic issues in the distributed utility paradigm of the future. Are large numbers of Americans going to acquiesce calmly to their electrical supply being rationed? No one knows, but there seem to be few options.

GREEN PRESSURE AND THE TIPPING POINT

While much legitimate scientific debate remains about whether global warming is real and, if so, whether it’s a naturally occurring or man-made phenomenon (arising primarily from carbon dioxide emissions), that debate is diminishing among politicians at every level. The majority of politicians, in fact, have bought into the notion that carbon emissions from many sources – primarily the generation of electricity by burning coal – are the culprit.

Thus, despite continued scientific debate, the political tipping point has been reached, and U.S. politicians are making moves to force this country’s utility industry to adapt to a situation that may or may not be real. Whether or not it makes logical or economic sense, utilities are under increasing pressure to adopt the Intelligent Utility/Smart Grid/Home Automation/Demand Response model – a model that includes many small generation points to make up for fewer large plants. This political tipping point is also shutting down more proposed generation projects each month, adding to the likely shortage. Since 2000, approximately 50 percent of all proposed new coal-fired generation plants have been canceled, according to energy-industry adviser Wood McKenzie (Gas and Power Service Insight, February 2008).

In the distant future, as technology continues to advance, electric generation in the United States will likely include a mix of energy sources, many of them distributed and green. however, there’s no way that in the next 10 years – the window of greatest concern in the NERC projections on the generation and reliability side – green energy will be ready and available in sufficient quantities to forestall a significant electricity shortfall. Nuclear energy represents the only truly viable solution; however, ongoing opposition to this form of power generation makes it unlikely that sufficient nuclear energy will be available within this period. The already-lengthy licensing process (though streamlined somewhat of late by the Nuclear Regulatory Commission) is exacerbated by lawsuits and opposition every step of the way. In addition, most of the necessary engineering and manufacturing processes have been lost in the United States over the last 30 years – the time elapsed since the last U.S. nuclear last plant was built – making it necessary to reacquire that knowledge from abroad.

The NERC Reliability Report of Oct. 15, 2007, points strongly toward a significant shortfall of electricity within approximately 10 years – a situation that could lead to rolling blackouts and brownouts in parts of the country that have never experienced them before. It could also lead to mandatory “demand response” – in other words, rationing – at the residential level. This situation, however, is not inevitable: technology exists to prevent it (including nuclear and cleaner coal now as well as a gradual development of solar, biomass, sequestration and so on over time, with wind for peaking). But thanks to concern over global warming and other issues raised by the environmental community, many politicians and regulators have become convinced otherwise. And thus, they won’t consider a different tack to solving the problem until there’s a public outcry – and that’s not likely to occur for another 10 years, at which point the national economy and utilities may already have suffered tremendous (possibly irreparable) harm.

WHAT CAN BE DONE?

The problem the utilities industry faces today is neither economic nor technological – it’s ideological. The global warming alarmists are shutting down coal before sufficient economically viable replacements (with the possible exception of nuclear) are in place. And the rest of the options are tied up in court. (For example, the United States needs 45 liquefied natural gas plants to be converted to gas – a costly fuel with iffy reliability – but only five have been built; the rest are tied up in court.) As long as it’s possible to tie up nuclear applications for five to 10 years and shut down “clean coal” plants through the political process, the U.S. utility industry is left with few options.

So what are utilities to do? They must get much smarter (IUE/Sg), and they must prepare for rationing (AMI/demand response). As seen in SEG studies, utilities still have a ways to go in these areas, but at least this is a strategy that can (for the most part) be put in place within 10 to 15 years. The technology for IUE/Sg already exists; it’s relatively inexpensive (compared with large-scale green energy development and nuclear plant construction); and utilities can employ it with relatively little regulatory oversight. In fact, regulators are actually encouraging it.

For these reasons, IUE/SG represents a major bridge to a more stable future. Even if today’s apocalyptic scenarios fail to develop – that is, global warming is debunked, or new generation sources develop much more rapidly than expected – intelligent utilities with smart grids will remain a good idea. The paradigm is shifting as we watch – but will that shift be completed in time to prevent major economic and social dislocation? Fasten your seatbelts: the next 10 to 15 years should be very interesting!